好上學(xué),職校招生與學(xué)歷提升信息網(wǎng)。

分站導(dǎo)航

熱點(diǎn)關(guān)注

好上學(xué)在線報(bào)名

在線咨詢

8:00-22:00

當(dāng)前位置:

好上學(xué)

>

職校資訊

>

招生要求

高一數(shù)學(xué)公式,高一數(shù)學(xué)公式大全總結(jié)

來(lái)源:好上學(xué) ??時(shí)間:2023-07-27

高考是一個(gè)是一場(chǎng)千軍萬(wàn)馬過(guò)獨(dú)木橋的戰(zhàn)役。面對(duì)高考,考生總是有很多困惑,什么時(shí)候開(kāi)始報(bào)名?高考體檢對(duì)報(bào)考專業(yè)有什么影響?什么時(shí)候填報(bào)志愿?怎么填報(bào)志愿?等等,為了幫助考生解惑,好上學(xué)整理了高一數(shù)學(xué)公式,高一數(shù)學(xué)公式大全總結(jié)相關(guān)信息,供考生參考,一起來(lái)看一下吧
高一數(shù)學(xué)公式,高一數(shù)學(xué)公式大全總結(jié)

高中應(yīng)該是中國(guó)教育最重要的一個(gè)階段,不同于幼兒園的啟蒙,小學(xué)的興趣,中學(xué)的基礎(chǔ),高中學(xué)習(xí)的內(nèi)容,就是由基礎(chǔ)轉(zhuǎn)向深度的一個(gè)重要的轉(zhuǎn)折點(diǎn),從這里開(kāi)始,很多的同學(xué)就會(huì)出現(xiàn)兩極分化,形成學(xué)霸和學(xué)渣的區(qū)別。一旦上了高中,死記硬背已經(jīng)完全不能奏效,高中龐雜的知識(shí)脈絡(luò),要是不理解其含義和推導(dǎo)過(guò)程,即使是死記住了結(jié)果,對(duì)于如何運(yùn)用這還是一無(wú)所知。下面就讓專注教育小編來(lái)和大家分享下高一數(shù)學(xué)公式:

三角函數(shù)公式

兩角和公式兩角和公式

sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

和差化積

2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB

半角公式

sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))

倍角公式

tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

三角形的面積

已知三角形底a,高h(yuǎn),則S=ah/2

已知三角形三邊a,b,c,半周長(zhǎng)p,則S=√[p(p-a)(p-b)(p-c)](海倫公式)(p=(a+b+c)/2)

和:(a+b+c)*(a+b-c)*1/4

已知三角形兩邊a,b,這兩邊夾角C,則S=absinC/2

設(shè)三角形三邊分別為a、b、c,內(nèi)切圓半徑為r

則三角形面積=(a+b+c)r/2

設(shè)三角形三邊分別為a、b、c,外接圓半徑為r

則三角形面積=abc/4r

已知三角形三邊a、b、c,則S=√{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]}(“三斜求積”南宋秦九韶)

|ab1|

S△=1/2*|cd1|

|ef1|

【|ab1|

|cd1|為三階行列式,此三角形ABC在平面直角坐標(biāo)系內(nèi)A(a,b),B(c,d),C(e,f),這里ABC

|ef1|

選區(qū)取最好按逆時(shí)針順序從右上角開(kāi)始取,因?yàn)檫@樣取得出的結(jié)果一般都為正值,如果不按這個(gè)規(guī)則取,可能會(huì)得到負(fù)值,但不要緊,只要取絕對(duì)值就可以了,不會(huì)影響三角形面積的大小!

柱形錐形體積面積公式

直棱柱側(cè)面積S=c*h斜棱柱側(cè)面積S=c'*h

正棱錐側(cè)面積S=1/2c*h'正棱臺(tái)側(cè)面積S=1/2(c+c')h'

圓臺(tái)側(cè)面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pi*r2

圓柱側(cè)面積S=c*h=2pi*h圓錐側(cè)面積S=1/2*c*l=pi*r*l

弧長(zhǎng)公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r

錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h

斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側(cè)棱長(zhǎng)

柱體體積公式V=s*h圓柱體V=pi*r2h

圓的標(biāo)準(zhǔn)方程和一般方程

圓:體積=4/3(π)(r^3)

面積=(π)(r^2)

周長(zhǎng)=2(π)r

圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標(biāo)

圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

(一)橢圓周長(zhǎng)計(jì)算公式

橢圓周長(zhǎng)公式:L=2πb+4(a-b)

橢圓周長(zhǎng)定理:橢圓的周長(zhǎng)等于該橢圓短半軸長(zhǎng)為半徑的圓周長(zhǎng)(2πb)加上四倍的該橢圓長(zhǎng)半軸長(zhǎng)(a)與短半軸長(zhǎng)(b)的差。

(二)橢圓面積計(jì)算公式

橢圓面積公式:S=πab

橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長(zhǎng)半軸長(zhǎng)(a)與短半軸長(zhǎng)(b)的乘積。

以上橢圓周長(zhǎng)、面積公式中雖然沒(méi)有出現(xiàn)橢圓周率T,但這兩個(gè)公式都是通過(guò)橢圓周率T推導(dǎo)演變而來(lái)。常數(shù)為體,公式為用。

橢圓形物體體積計(jì)算公式橢圓的長(zhǎng)半徑*短半徑*PAI*高

拋物線:y=ax^2+bx+c

就是y等于ax的平方加上bx再加上c

a>0時(shí)開(kāi)口向上

a<0<>時(shí)開(kāi)口向下

c=0時(shí)拋物線經(jīng)過(guò)原點(diǎn)

b=0時(shí)拋物線對(duì)稱軸為y軸

還有頂點(diǎn)式y(tǒng)=a(x+h)^2+k

就是y等于a乘以(x+h)的平方+k

-h是頂點(diǎn)坐標(biāo)的x

k是頂點(diǎn)坐標(biāo)的y

一般用于求最大值與最小值

1.拋物線標(biāo)準(zhǔn)方程:y^2=2px

它表示拋物線的焦點(diǎn)在x的正半軸上,焦點(diǎn)坐標(biāo)為(p/2,0)準(zhǔn)線方程為x=-p/2

由于拋物線的焦點(diǎn)可在任意半軸,故共有標(biāo)準(zhǔn)方程y^2=2pxy^2=-2pxx^2=2pyx^2=-2py

學(xué)習(xí)不僅是要記住這些高一數(shù)學(xué)公式,更要理解如何得到這些公式和這些公式的應(yīng)用方法,只有知其然又知其所以然,才能掌握高中的知識(shí),得到高分。想要提升記憶力,提高學(xué)習(xí)成績(jī),掌握科學(xué)的學(xué)習(xí)方法。

如果覺(jué)得本文對(duì)您有幫助,歡迎收藏。今天最后推薦的在線輔導(dǎo)平臺(tái)是專注教育——中小學(xué)網(wǎng)上*輔導(dǎo),全國(guó)重點(diǎn)中學(xué)名師*家教補(bǔ)習(xí)。

以上就是好上學(xué)為大家?guī)?lái)的高一數(shù)學(xué)公式,高一數(shù)學(xué)公式大全總結(jié),希望能幫助到廣大考生!

標(biāo)簽:??

分享:

qq好友分享 QQ空間分享 新浪微博分享 微信分享 更多分享方式
(c)2024 m.hslydf.cn All Rights Reserved SiteMap 聯(lián)系我們 | 浙ICP備2023018783號(hào)