好上學(xué),職校招生與學(xué)歷提升信息網(wǎng)。

分站導(dǎo)航

熱點(diǎn)關(guān)注

好上學(xué)在線報(bào)名

在線咨詢

8:00-22:00

當(dāng)前位置:

好上學(xué)

>

職校資訊

>

招生要求

高中數(shù)學(xué)函數(shù)閾值求法匯總

來源:好上學(xué) ??時(shí)間:2023-07-29

高考是一個(gè)是一場(chǎng)千軍萬馬過獨(dú)木橋的戰(zhàn)役。面對(duì)高考,考生總是有很多困惑,什么時(shí)候開始報(bào)名?高考體檢對(duì)報(bào)考專業(yè)有什么影響?什么時(shí)候填報(bào)志愿?怎么填報(bào)志愿?等等,為了幫助考生解惑,好上學(xué)整理了高中數(shù)學(xué)函數(shù)閾值求法匯總相關(guān)信息,供考生參考,一起來看一下吧
高中數(shù)學(xué)函數(shù)閾值求法匯總


  一.觀察法


  通過對(duì)函數(shù)定義域、性質(zhì)的觀察,結(jié)合函數(shù)的解析式,求得函數(shù)的值域。

  例1求函數(shù)y=3+√(2-3x)的值域。

  點(diǎn)撥:根據(jù)算術(shù)平方根的性質(zhì),先求出√(2-3x)的值域。


  解:由算術(shù)平方根的性質(zhì),知√(2-3x)≥0,

  故3+√(2-3x)≥3。

  ∴函數(shù)的知域?yàn)?


  點(diǎn)評(píng):算術(shù)平方根具有雙重非負(fù)性,即:(1)被開方數(shù)的非負(fù)性,(2)值的非負(fù)性。


  本題通過直接觀察算術(shù)平方根的性質(zhì)而獲解,這種方法對(duì)于一類函數(shù)的值域的求法,簡(jiǎn)捷明了,不失為一種巧法。


  練習(xí):求函數(shù)y=[x](0≤x≤5)的值域。(答案:值域?yàn)椋簕0,1,2,3,4,5})


  二.反函數(shù)法


  當(dāng)函數(shù)的反函數(shù)存在時(shí),則其反函數(shù)的定義域就是原函數(shù)的值域。


  例2求函數(shù)y=(x+1)/(x+2)的值域。


  點(diǎn)撥:先求出原函數(shù)的反函數(shù),再求出其定義域。


  解:顯然函數(shù)y=(x+1)/(x+2)的反函數(shù)為:x=(1-2y)/(y-1),其定義域?yàn)閥≠1的實(shí)數(shù),故函數(shù)y的值域?yàn)閧y∣y≠1,y∈R}。


  點(diǎn)評(píng):利用反函數(shù)法求原函數(shù)的定義域的前提條件是原函數(shù)存在反函數(shù)。這種方法體現(xiàn)逆向思維的思想,是數(shù)學(xué)解題的重要方法之一。


  練習(xí):求函數(shù)y=(10x+10-x)/(10x-10-x)的值域。(答案:函數(shù)的值域?yàn)閧y∣y<-1或y>1})


  三.配方法


  當(dāng)所給函數(shù)是二次函數(shù)或可化為二次函數(shù)的復(fù)合函數(shù)時(shí),可以利用配方法求函數(shù)值域


  例3:求函數(shù)y=√(-x2+x+2)的值域。


  點(diǎn)撥:將被開方數(shù)配方成平方數(shù),利用二次函數(shù)的值求。


  解:由-x2+x+2≥0,可知函數(shù)的定義域?yàn)閤∈[-1,2]。此時(shí)-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]

  ∴0≤√-x2+x+2≤3/2,函數(shù)的值域是[0,3/2]


  點(diǎn)評(píng):求函數(shù)的值域不但要重視對(duì)應(yīng)關(guān)系的應(yīng)用,而且要特別注意定義域?qū)χ涤虻闹萍s作用。配方法是數(shù)學(xué)的一種重要的思想方法。


  練習(xí):求函數(shù)y=2x-5+√15-4x的值域.(答案:值域?yàn)閧y∣y≤3})


  四.判別式法


  若可化為關(guān)于某變量的二次方程的分式函數(shù)或無理函數(shù),可用判別式法求函數(shù)的值域。


  例4求函數(shù)y=(2x2-2x+3)/(x2-x+1)的值域。


  點(diǎn)撥:將原函數(shù)轉(zhuǎn)化為自變量的二次方程,應(yīng)用二次方程根的判別式,從而確定出原函數(shù)的值域。


  解:將上式化為(y-2)x2-(y-2)x+(y-3)=0(*)

  當(dāng)y≠2時(shí),由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2

  當(dāng)y=2時(shí),方程(*)無解?!嗪瘮?shù)的值域?yàn)?


  點(diǎn)評(píng):把函數(shù)關(guān)系化為二次方程F(x,y)=0,由于方程有實(shí)數(shù)解,故其判別式為非負(fù)數(shù),可求得函數(shù)的值域。常適應(yīng)于形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函數(shù)。


  練習(xí):求函數(shù)y=1/(2x2-3x+1)的值域。(答案:值域?yàn)閥≤-8或y>0)。


  五.值法


  對(duì)于閉區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),可求出y=f(x)在區(qū)間[a,b]內(nèi)的較值,并與邊界值f(a).f(b)作比較,求出函數(shù)的值,可得到函數(shù)y的值域。


  例5已知(2x2-x-3)/(3x2+x+1)≤0,且滿足x+y=1,求函數(shù)z=xy+3x的值域。


  點(diǎn)撥:根據(jù)已知條件求出自變量x的取值范圍,將目標(biāo)函數(shù)消元、配方,可求出函數(shù)的值域。


  解:∵3x2+x+1>0,上述分式不等式與不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,將y=1-x代入z=xy+3x中,得z=-x2+4x(-1≤x≤3/2),


  ∴z=-(x-2)2+4且x∈[-1,3/2],函數(shù)z在區(qū)間[-1,3/2]上連續(xù),故只需比較邊界的大小。

  當(dāng)x=-1時(shí),z=-5;當(dāng)x=3/2時(shí),z=15/4。

  ∴函數(shù)z的值域?yàn)閧z∣-5≤z≤15/4}。


  點(diǎn)評(píng):本題是將函數(shù)的值域問題轉(zhuǎn)化為函數(shù)的值。對(duì)開區(qū)間,若存在值,也可通過求出值而獲得函數(shù)的值域。


  練習(xí):若√x為實(shí)數(shù),則函數(shù)y=x2+3x-5的值域?yàn)?)


  A.(-∞,+∞)B.[-7,+∞]C.[0,+∞)D.[-5,+∞)

  (答案:D)。


  六.圖象法


  通過觀察函數(shù)的圖象,運(yùn)用數(shù)形結(jié)合的方法得到函數(shù)的值域。


  例6求函數(shù)y=∣x+1∣+√(x-2)2的值域。


  點(diǎn)撥:根據(jù)值的意義,去掉符號(hào)后轉(zhuǎn)化為分段函數(shù),作出其圖象。


  解:原函數(shù)化為-2x+1(x≤1)

  y=3(-1

  2x-1(x>2)

  它的圖象如圖所示。

  顯然函數(shù)值y≥3,所以,函數(shù)值域[3,+∞]。


  點(diǎn)評(píng):分段函數(shù)應(yīng)注意函數(shù)的端點(diǎn)。利用函數(shù)的圖象

  求函數(shù)的值域,體現(xiàn)數(shù)形結(jié)合的思想。是解決問題的重要方法。

  求函數(shù)值域的方法較多,還適應(yīng)通過不等式法、函數(shù)的單調(diào)性、換元法等方法求函數(shù)的值域。


  七.單調(diào)法


  利用函數(shù)在給定的區(qū)間上的單調(diào)遞增或單調(diào)遞減求值域。


  例1求函數(shù)y=4x-√1-3x(x≤1/3)的值域。


  點(diǎn)撥:由已知的函數(shù)是復(fù)合函數(shù),即g(x)=-√1-3x,y=f(x)+g(x),其定義域?yàn)閤≤1/3,在此區(qū)間內(nèi)分別討論函數(shù)的增減性,從而確定函數(shù)的值域。


  解:設(shè)f(x)=4x,g(x)=-√1-3x,(x≤1/3),易知它們?cè)诙x域內(nèi)為增函數(shù),從而y=f(x)+g(x)=4x-√1-3x


  在定義域?yàn)閤≤1/3上也為增函數(shù),而且y≤f(1/3)+g(1/3)=4/3,因此,所求的函數(shù)值域?yàn)閧y|y≤4/3}。


  點(diǎn)評(píng):利用單調(diào)性求函數(shù)的值域,是在函數(shù)給定的區(qū)間上,或求出函數(shù)隱含的區(qū)間,結(jié)合函數(shù)的增減性,求出其函數(shù)在區(qū)間端點(diǎn)的函數(shù)值,進(jìn)而可確定函數(shù)的值域。


  練習(xí):求函數(shù)y=3+√4-x的值域。(答案:{y|y≥3})


  八.換元法


  以新變量代替函數(shù)式中的某些量,使函數(shù)轉(zhuǎn)化為以新變量為自變量的函數(shù)形式,進(jìn)而求出值域。


  例2求函數(shù)y=x-3+√2x+1的值域。


  點(diǎn)撥:通過換元將原函數(shù)轉(zhuǎn)化為某個(gè)變量的二次函數(shù),利用二次函數(shù)的值,確定原函數(shù)的值域。


  解:設(shè)t=√2x+1(t≥0),則

  x=1/2(t2-1)。

  于是y=1/2(t2-1)-3+t=1/2(t+1)2-4≥1/2-4=-7/2.


  所以,原函數(shù)的值域?yàn)閧y|y≥-7/2}。


  點(diǎn)評(píng):將無理函數(shù)或二次型的函數(shù)轉(zhuǎn)化為二次函數(shù),通過求出二次函數(shù)的值,從而確定出原函數(shù)的值域。這種解題的方法體現(xiàn)換元、化歸的思想方法。它的應(yīng)用十分廣泛。


  練習(xí):求函數(shù)y=√x-1–x的值域。(答案:{y|y≤-3/4}


  九.構(gòu)造法


  根據(jù)函數(shù)的結(jié)構(gòu)特征,賦予幾何圖形,數(shù)形結(jié)合。


  例3求函數(shù)y=√x2+4x+5+√x2-4x+8的值域。


  點(diǎn)撥:將原函數(shù)變形,構(gòu)造平面圖形,由幾何知識(shí),確定出函數(shù)的值域。


  解:原函數(shù)變形為f(x)=√(x+2)2+1+√(2-x)2+22

  作一個(gè)長(zhǎng)為4、寬為3的矩形ABCD,再切割成12個(gè)單位

  正方形。設(shè)HK=x,則ek=2-x,KF=2+x,AK=√(2-x)2+22,

  KC=√(x+2)2+1。

  由三角形三邊關(guān)系知,AK+KC≥AC=5。當(dāng)A、K、C三點(diǎn)共

  線時(shí)取等號(hào)。

  ∴原函數(shù)的知域?yàn)閧y|y≥5}。


  點(diǎn)評(píng):對(duì)于形如函數(shù)y=√x2+a±√(c-x)2+b(a,b,c均為正數(shù)),均可通過構(gòu)造幾何圖形,由幾何的性質(zhì),直觀明了、方便簡(jiǎn)捷。這是數(shù)形結(jié)合思想的體現(xiàn)。


  練習(xí):求函數(shù)y=√x2+9+√(5-x)2+4的值域。(答案:{y|y≥5√2})


  十.比例法


  對(duì)于一類含條件的函數(shù)的值域的求法,可將條件轉(zhuǎn)化為比例式,代入目標(biāo)函數(shù),進(jìn)而求出原函數(shù)的值域。


  例4已知x,y∈R,且3x-4y-5=0,求函數(shù)z=x2+y2的值域。


  點(diǎn)撥:將條件方程3x-4y-5=0轉(zhuǎn)化為比例式,設(shè)置參數(shù),代入原函數(shù)。


  解:由3x-4y-5=0變形得,(x3)/4=(y-1)/3=k(k為參數(shù))

  ∴x=3+4k,y=1+3k,

  ∴z=x2+y2=(3+4k)2+(14+3k)2=(5k+3)2+1。

  當(dāng)k=-3/5時(shí),x=3/5,y=-4/5時(shí),zmin=1。

  函數(shù)的值域?yàn)閧z|z≥1}.


  點(diǎn)評(píng):本題是多元函數(shù)關(guān)系,一般含有約束條件,將條件轉(zhuǎn)化為比例式,通過設(shè)參數(shù),可將原函數(shù)轉(zhuǎn)化為單函數(shù)的形式,這種解題方法體現(xiàn)諸多思想方法,具有一定的創(chuàng)新意識(shí)。


  練習(xí):已知x,y∈R,且滿足4x-y=0,求函數(shù)f(x,y)=2x2-y的值域。(答案:{f(x,y)|f(x,y)≥1})


  十一.利用多項(xiàng)式的除法


  例5求函數(shù)y=(3x+2)/(x+1)的值域。


  點(diǎn)撥:將原分式函數(shù),利用長(zhǎng)除法轉(zhuǎn)化為一個(gè)整式與一個(gè)分式之和。


  解:y=(3x+2)/(x+1)=3-1/(x+1)。

  ∵1/(x+1)≠0,故y≠3。

  ∴函數(shù)y的值域?yàn)閥≠3的一切實(shí)數(shù)。


  點(diǎn)評(píng):對(duì)于形如y=(ax+b)/(cx+d)的形式的函數(shù)均可利用這種方法。


  練習(xí):求函數(shù)y=(x2-1)/(x-1)(x≠1)的值域。(答案:y≠2)


  十二.不等式法


  例6求函數(shù)Y=3x/(3x+1)的值域。


  點(diǎn)撥:先求出原函數(shù)的反函數(shù),根據(jù)自變量的取值范圍,構(gòu)造不等式。


  解:易求得原函數(shù)的反函數(shù)為y=log3[x/(1-x)],

  由對(duì)數(shù)函數(shù)的定義知x/(1-x)>0

  1-x≠0

  解得,0

  ∴函數(shù)的值域(0,1)。


  點(diǎn)評(píng):考查函數(shù)自變量的取值范圍構(gòu)造不等式(組)或構(gòu)造重要不等式,求出函數(shù)定義域,進(jìn)而求值域。不等式法是重要的解題工具,它的應(yīng)用非常廣泛。是數(shù)學(xué)解題的方法之一。


  以下供練習(xí)選用:求下列函數(shù)的值域


  1.Y=√(15-4x)+2x-5;({y|y≤3})

  2.Y=2x/(2x-1)。(y>1或y<0)



  專注教育是一家專注于初高中*輔導(dǎo)的互聯(lián)網(wǎng)教育機(jī)構(gòu),是美國(guó)納斯達(dá)克上市公司歡聚時(shí)代旗下教育品牌,董事長(zhǎng)是小米公司的雷軍,已經(jīng)開設(shè)數(shù)學(xué)、語文、英語、物理、化學(xué)5門初高中主要科目的課程。

  專注教育()突破地域限制,實(shí)現(xiàn)優(yōu)質(zhì)教育資源合理再分配,堅(jiān)持從全國(guó)重點(diǎn)中學(xué)挑選經(jīng)驗(yàn)豐富的老師在線授課。

  打開微信“掃一掃”關(guān)于專注教育微信公眾號(hào),或微信搜索“專注教育”關(guān)注公眾號(hào),預(yù)約免費(fèi)試聽課程。咨詢熱線了解更多:400-890-8876。

  登錄專注教育官網(wǎng),觀看*輔導(dǎo)視頻,了解教學(xué)過程,下載專注教育App體驗(yàn)免費(fèi)課程。

  老師針對(duì)學(xué)生的個(gè)性特點(diǎn)、薄弱點(diǎn)、學(xué)習(xí)習(xí)慣等制定最適合每個(gè)學(xué)生的個(gè)性化學(xué)習(xí)方案,“教、學(xué)、練、測(cè)”的教學(xué)鏈環(huán)保證了學(xué)生的學(xué)習(xí)效率和提分效果。針對(duì)學(xué)習(xí)家督的問題,專注教育App還開發(fā)了課堂錄像、家長(zhǎng)*旁聽的功能,讓孩子足不出戶,輕松上課,高效學(xué)習(xí),提分快。


以上就是好上學(xué)為大家?guī)淼母咧袛?shù)學(xué)函數(shù)閾值求法匯總,希望能幫助到廣大考生!

標(biāo)簽:??

分享:

qq好友分享 QQ空間分享 新浪微博分享 微信分享 更多分享方式
(c)2024 m.hslydf.cn All Rights Reserved SiteMap 聯(lián)系我們 | 浙ICP備2023018783號(hào)