好上學(xué),職校招生與學(xué)歷提升信息網(wǎng)。

分站導(dǎo)航

熱點(diǎn)關(guān)注

好上學(xué)在線報(bào)名

在線咨詢

8:00-22:00

當(dāng)前位置:

好上學(xué)

>

職校資訊

>

招生要求

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié),高一數(shù)學(xué)如何提分

來源:好上學(xué) ??時(shí)間:2023-07-29

高考是一個(gè)是一場(chǎng)千軍萬馬過獨(dú)木橋的戰(zhàn)役。面對(duì)高考,考生總是有很多困惑,什么時(shí)候開始報(bào)名?高考體檢對(duì)報(bào)考專業(yè)有什么影響?什么時(shí)候填報(bào)志愿?怎么填報(bào)志愿?等等,為了幫助考生解惑,好上學(xué)整理了高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié),高一數(shù)學(xué)如何提分相關(guān)信息,供考生參考,一起來看一下吧
高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié),高一數(shù)學(xué)如何提分

  高中的數(shù)學(xué)比初中的簡直就是一個(gè)進(jìn)階,要想數(shù)學(xué)學(xué)得好,勢(shì)必得在高一開始就要下一番苦工。在此小編今天來總結(jié)一下高一數(shù)學(xué)必修一的一些知識(shí)點(diǎn),來幫助那些還沒吃透高一數(shù)學(xué)必修一的同學(xué)。


  第一章:*與函數(shù)概念

  一、*有關(guān)概念

  1.*的含義

  2.*的中元素的三個(gè)特性:

  (1)元素的確定性如:世界上的山

  (2)元素的互異性如:由HAPPY的字母組成的*{H,A,P,Y}

  (3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)*

  3.*的表示:{…}如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

  (1)用拉丁字母表示*:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

  (2)*的表示方法:列舉法與描述法。

  注意:常用數(shù)集及其記法:XKb1.Com

  非負(fù)整數(shù)集(即自然數(shù)集)記作:N

  正整數(shù)集:N*或N+

  整數(shù)集:Z

  有理數(shù)集:Q

  實(shí)數(shù)集:R

  1)列舉法:{a,b,c……}

  2)描述法:將*中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示*{x?R|x-3>2},{x|x-3>2}

  3)語言描述法:例:{不是直角三角形的三角形}

  4)Venn圖:

  4、*的分類:

  (1)有限集含有有限個(gè)元素的*

  (2)無限集含有無限個(gè)元素的*

  (3)空集不含任何元素的*例:{x|x2=-5}

  二、*間的基本關(guān)系

  1.“包含”關(guān)系—子集

  注意:有兩種可能

  (1)A是B的一部分,;

  (2)A與B是同一*。

  反之:*A不包含于*B,或*B不包含*A,記作AB或BA

  2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)實(shí)

  例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同則兩*相等”

  即:

 ?、偃魏我粋€(gè)*是它本身的子集。AíA

  ②真子集:如果AíB,且A1B那就說*A是*B的真子集,記作AB(或BA)

 ?、廴绻鸄íB,BíC,那么AíC

  ④如果AíB同時(shí)BíA那么A=B

  3.不含任何元素的*叫做空集,記為Φ

  規(guī)定:空集是任何*的子集,空集是任何非空*的真子集。

  4.子集個(gè)數(shù):

  有n個(gè)元素的*,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-1個(gè)非空子集,含有2n-1個(gè)非空真子集

  三、*的運(yùn)算

  運(yùn)算類型交集并集補(bǔ)集

  定義由所有屬于A且屬于B的元素所組成的*,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.

  由所有屬于*A或?qū)儆?B的元素所組成的*,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).

  第二章:基本初等函數(shù)

  一、指數(shù)函數(shù)

  (一)指數(shù)與指數(shù)冪的運(yùn)算

  1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.

  當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù).此時(shí),的次方根用符號(hào)表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).

  當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù).此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)-表示.正的次方根與負(fù)的次方根可以合并成±(>0).由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。

  注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),

  2.分?jǐn)?shù)指數(shù)冪

  正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:

  0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義

  指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.

  3.實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)

  (二)指數(shù)函數(shù)及其性質(zhì)

  1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)镽.

  注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.

  2、指數(shù)函數(shù)的圖象和性質(zhì)

  第三章:第三章函數(shù)的應(yīng)用

  1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。

  2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:

  方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).

  3、函數(shù)零點(diǎn)的求法:

  求函數(shù)的零點(diǎn):

  (1)(代數(shù)法)求方程的實(shí)數(shù)根;

  (2)(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn).

  4、二次函數(shù)的零點(diǎn):

  二次函數(shù).

  1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).

  3)△<0,方程無實(shí)根,二次函數(shù)的圖象與軸無交點(diǎn),二次函數(shù)無零點(diǎn).<>

  以上就是高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié),想在數(shù)學(xué)這條艱難的路上繼續(xù)前行的同學(xué),在高一的時(shí)候就要打好基礎(chǔ),不要在高三的時(shí)候再后悔為什么自己之前沒有好好上課學(xué)習(xí)數(shù)學(xué)。

今天最后推薦的在線輔導(dǎo)平臺(tái)是專注教育——中小學(xué)網(wǎng)上*輔導(dǎo),全國重點(diǎn)中學(xué)名師*家教補(bǔ)家教補(bǔ)習(xí)!

以上就是好上學(xué)為大家?guī)淼母咭粩?shù)學(xué)必修一知識(shí)點(diǎn)總結(jié),高一數(shù)學(xué)如何提分,希望能幫助到廣大考生!

標(biāo)簽:????

分享:

qq好友分享 QQ空間分享 新浪微博分享 微信分享 更多分享方式
(c)2024 m.hslydf.cn All Rights Reserved SiteMap 聯(lián)系我們 | 浙ICP備2023018783號(hào)