人教版高中數(shù)學(xué)必修1至4公式及知識(shí)點(diǎn)總結(jié)
來(lái)源:好上學(xué) ??時(shí)間:2023-09-08
今天,好上學(xué)小編為大家?guī)Я巳私贪娓咧袛?shù)學(xué)必修1至4公式及知識(shí)點(diǎn)總結(jié),希望能幫助到廣大考生和家長(zhǎng),一起來(lái)看看吧!
人教版高中數(shù)學(xué)必修1至4公式及知識(shí)點(diǎn)總結(jié)
公式分類同角三角函數(shù)的基本關(guān)系 tan α=sin α/cos α平常針對(duì)不同條件的常用的兩個(gè)公式 sin^2 α+cos^2 α=1 tan α *tan α 的鄰角=1銳角三角函數(shù)公式 正弦: sin α=∠α的對(duì)邊/∠α 的斜邊 余弦:cos α=∠α的鄰邊/∠α的斜邊 正切:tan α=∠α的對(duì)邊/∠α的鄰邊 余切:cot α=∠α的鄰邊/∠α的對(duì)邊
你字幾*啊
很多啦╮(╯▽╰)╭
這個(gè)去書(shū)店*就有了吧....
求高中數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)
圓錐曲線包括橢圓,雙曲線,拋物線。其統(tǒng)一定義:到定點(diǎn)的距離與到定直線的距離的比e是常數(shù)的點(diǎn)的軌跡叫做圓錐曲線。當(dāng)0>0,c>0,c^2=a^2-^2.2.中心在原點(diǎn),焦點(diǎn)在y軸上的橢圓標(biāo)準(zhǔn)方程:(x^2/^2)+(y^2/a^2)=1其中a>>0,c>0,c^2=a^2-^2.參數(shù)方程:X=acosθ Y=sinθ (θ為參數(shù) ,設(shè)橫坐標(biāo)為acosθ,是由于圓錐曲線的考慮,橢圓伸縮變換后可為圓 此時(shí)c=0,圓的acosθ=r)2)雙曲線文字語(yǔ)言定義:平面內(nèi)一個(gè)動(dòng)點(diǎn)到一個(gè)定點(diǎn)與一條定直線的距離之比是一個(gè)大于1的常數(shù)e。定點(diǎn)是雙曲線的焦點(diǎn),定直線是雙曲線的準(zhǔn)線,常數(shù)e是雙曲線的離心率。標(biāo)準(zhǔn)方程:1.中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線標(biāo)準(zhǔn)方程:(x^2/a^2)-(y^2/^2)=1其中a>0,>0,c^2=a^2+^2.2.中心在原點(diǎn),焦點(diǎn)在y軸上的雙曲線標(biāo)準(zhǔn)方程:(y^2/a^2)-(x^2/^2)=1.其中a>0,>0,c^2=a^2+^2.參數(shù)方程:x=asecθ y=tanθ (θ為參數(shù) )3)拋物線標(biāo)準(zhǔn)方程:1.頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上開(kāi)口向右的拋物線標(biāo)準(zhǔn)方程:y^2=2px 其中 p>02.頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上開(kāi)口向左的拋物線標(biāo)準(zhǔn)方程:y^2=-2px 其中 p>03.頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸上開(kāi)口向上的拋物線標(biāo)準(zhǔn)方程:x^2=2py 其中 p>04.頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸上開(kāi)口向下的拋物線標(biāo)準(zhǔn)方程:x^2=-2py 其中 p>0參數(shù)方程x=2pt^2 y=2pt (t為參數(shù)) t=1/tanθ(tanθ為曲線上點(diǎn)與坐標(biāo)原點(diǎn)確定直線的斜率)特別地,t可等于0直角坐標(biāo)y=ax^2+x+c (開(kāi)口方向?yàn)閥軸, a0 ) x=ay^2+y+c (開(kāi)口方向?yàn)閤軸, a0 )圓錐曲線(二次非圓曲線)的統(tǒng)一極坐標(biāo)方程為ρ=ep/(1-e×cosθ) 其中e表示離心率,p為焦點(diǎn)到準(zhǔn)線的距離。二、焦半徑圓錐曲線上任意一點(diǎn)到焦點(diǎn)的距離稱為焦半徑。圓錐曲線左右焦點(diǎn)為F1、F2,其上任意一點(diǎn)為P(x,y),則焦半徑為:橢圓 |PF1|=a+ex |PF2|=a-ex雙曲線 P在左支,|PF1|=-a-ex |PF2|=a-exP在右支,|PF1|=a+ex |PF2|=-a+exP在下支,|PF1|= -a-ey |PF2|=a-eyP在上支,|PF1|= a+ey |PF2|=-a+ey拋物線 |PF|=x+p/2三、圓錐曲線的切線方程圓錐曲線上一點(diǎn)P(x0,y0)的切線方程以x0x代替x^2,以y0y代替y^2;以(x0+x)/2代替x,以(y0+y)/2代替y即橢圓:x0x/a^2+y0y/^2=1;雙曲線:x0x/a^2-y0y/^2=1;拋物線:y0y=p(x0+x)四、焦準(zhǔn)距圓錐曲線的焦點(diǎn)到準(zhǔn)線的距離p叫圓錐曲線的焦準(zhǔn)距,或焦參數(shù)。橢圓的焦準(zhǔn)距:p=(^2)/c雙曲線的焦準(zhǔn)距:p=(^2)/c拋物線的準(zhǔn)焦距:p五、通徑圓錐曲線中,過(guò)焦點(diǎn)并垂直于軸的弦成為通徑。橢圓的通徑:(2^2)/a雙曲線的通徑:(2^2)/a拋物線的通徑:2p六、圓錐曲線的性質(zhì)對(duì)比見(jiàn)下圖:七、圓錐曲線的中點(diǎn)弦問(wèn)題已知圓錐曲線內(nèi)一點(diǎn)為圓錐曲線的一弦中點(diǎn),求該弦的方程⒈聯(lián)立方程法。用點(diǎn)斜式設(shè)出該弦的方程(斜率不存在的情況需要另外考慮),與圓錐曲線方程聯(lián)立求得關(guān)于x的一元二次方程和關(guān)于y的一元二次方程,由韋達(dá)定理得到兩根之和的表達(dá)式,在由中點(diǎn)坐標(biāo)公式的兩根之和的具體數(shù)值,求出該弦的方程。2.點(diǎn)差法,或稱代點(diǎn)相減法。設(shè)出弦的兩端點(diǎn)坐標(biāo)(x1,y1)和(x2,y2),代入圓錐曲線的方程,將得到的兩個(gè)方程相減,運(yùn)用平方差公式得[(x1+x2)·(x1-x2)]/(a^2)+[(y1+y2)·(y1-y2)/(^2]=0 由斜率為(y1-y2)/(x1-x2)可以得到斜率的取值。(使用時(shí)注意判別式的問(wèn)題)
高一數(shù)學(xué)重點(diǎn)知識(shí)
我是江蘇的數(shù)學(xué)老師,不知道你是那個(gè)省份的。就我們江蘇而言,高一數(shù)學(xué)學(xué)必修1、4、5、而無(wú)論是文科還是理科,這四本書(shū)在整個(gè)高中數(shù)學(xué)的比重還是非常大的,個(gè)人認(rèn)為要占到80%以上。所以高一涉及的知識(shí)點(diǎn)幾乎都是重點(diǎn)。*,函數(shù)、三角函數(shù)、向量、解三角形、數(shù)列、不等式,立體幾何、解析幾何等,難點(diǎn)為函數(shù)的值域求法、數(shù)列,不等式作為工具比較靈活,把這些板塊學(xué)好了,整個(gè)高中數(shù)學(xué)也就學(xué)好了
重點(diǎn)??你的 是問(wèn)比較重要的知識(shí)點(diǎn)嗎? 三角函數(shù)這一章 最重要的就是正弦函數(shù) 余弦函數(shù) 以及 正切函數(shù)呀 尤其是圖像問(wèn)題 一定要多做題 鞏固提高 再有就是三角恒等變換 很重要的 一定要把和角 倍角 半角 這些公式公式記牢 多做題 多總結(jié)方法 關(guān)于向量嘛 向量的加減法 數(shù)乘向量等比較重要 向量的分解 數(shù)量積等很重要 一定要多做題 多理解 總結(jié)分析
我是山西的···對(duì)于我們。。三角函數(shù)那是重點(diǎn)!?。?
我是上海的*,不等式,指對(duì)函數(shù),log,三角比,三角函數(shù),解三角方程。最重要的是三角吧!
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)有
總體分為十四個(gè)部分 一·*與一些簡(jiǎn)單的邏輯關(guān)系里面重要的是含絕對(duì)值的不等式及一元二次不等式的解法,一定要搞透徹,其他的了解 明白一切就行 二·函數(shù) 1·函數(shù)的定義與性質(zhì),重要的是千萬(wàn)要記住它的定義域,還有的就是會(huì)用其性質(zhì)。2·一些特定的函數(shù)有反函數(shù),二次函數(shù),指數(shù)函數(shù),對(duì)數(shù)函數(shù)。3·函數(shù)的圖像問(wèn)題以及函數(shù)的應(yīng)用,一定要會(huì)數(shù)形結(jié)合法去解題 三·數(shù)列 1·數(shù)列的概念 2·等差數(shù)列及其性質(zhì) 3·等比數(shù)列及其性質(zhì) 4·數(shù)列的綜合應(yīng)用 重點(diǎn)是那兩個(gè)數(shù)列等差與等比的性質(zhì) 四·三角函數(shù) 1·任意的三角函數(shù) 2·三角函數(shù)的誘導(dǎo)公式 3·正余弦和正余切 5二倍角的一些公式 6·三角函數(shù)的圖像及其性質(zhì) 這一部分很重要全國(guó)一卷第一個(gè)大題就是與三角函數(shù)有關(guān)的 五·平面向量 1.平面向量的概念及運(yùn)算 2.基本定理和坐標(biāo)表示 3.數(shù)量積 4.接三角形及其應(yīng)用 5.最后是綜合的應(yīng)用 這一部分就是用于三角或是坐標(biāo)的計(jì)算一般會(huì)在大題的第一問(wèn) 六·不等式 1.不等式的概念與性質(zhì) 2.證明 3.解法 4.含絕對(duì)值的不等式 5.綜合應(yīng)用 這一節(jié)要好好學(xué) 七·直線與圓的方程 1.直線的方程 2.兩直線的位置關(guān)系 3.簡(jiǎn)單的線性規(guī)劃 4.曲線與方程 5.圓及直線與園的位置關(guān)系 下一部分的基礎(chǔ) 八·解析幾何(就是圓錐曲線方程) 1.橢圓 2.雙曲線 3.拋物線 4.直線與雙曲線的位置關(guān)系 5.軌跡問(wèn)題 重點(diǎn)是搞明白圓錐曲線的那兩個(gè)定義,尤其是第二定義,通常根據(jù)那個(gè)去求軌跡方程 九·直線平面和簡(jiǎn)單幾何題(立體幾何) 1.平面空間兩條直線 2.直線平面平行的判斷及性質(zhì) 3.直線平面垂直的判斷及性質(zhì) 4.空間中的角與距離 5.棱柱與棱錐 6.多面體與球 7.空間向量及其運(yùn)算 8.空間向量的坐標(biāo)運(yùn)算 這一節(jié)肯定會(huì)有一個(gè)大題,還會(huì)有別的小題 十·排列組合與概率 1.各種式子的應(yīng)用 2.二項(xiàng)式定理 3.隨機(jī)事件的概率 4.互斥事件 5.相互獨(dú)立事件 這個(gè)也會(huì)有一個(gè)題 十一·概率與統(tǒng)計(jì) 1.離散型隨機(jī)變量的分布列 2.離散型隨機(jī)變量的期望與方差 3.抽樣方法與總體分布的估計(jì) 4.正態(tài)分布與線性回歸 這一節(jié)也會(huì)有一個(gè)大題 十二·極限 1.數(shù)學(xué)極限歸納法 2.數(shù)列的極限 3.函數(shù)的極限與函數(shù)的連續(xù)性 十三·導(dǎo)數(shù) 導(dǎo)數(shù)的概念運(yùn)算與應(yīng)用 一般會(huì)用于函數(shù)的單調(diào)性 十四·復(fù)數(shù) 會(huì)有一個(gè)小題
高一數(shù)學(xué)第一章*與函數(shù)概念知識(shí)點(diǎn)總結(jié)
網(wǎng)絡(luò)結(jié)構(gòu)的打不上, 概要:第一章 *與函數(shù)概念 一、*有關(guān)概念 1、*的含義:某些指定的對(duì)象集在一起就成為一個(gè)*,其中每一個(gè)對(duì)象叫元素。 2、*的中元素的三個(gè)特性: 1.元素的確定性; 2.元素的互異性; 3.元素的無(wú)序性 說(shuō) ... 第一章 *與函數(shù)概念 一、*有關(guān)概念 1、*的含義:某些指定的對(duì)象集在一起就成為一個(gè)*,其中每一個(gè)對(duì)象叫元素。 2、*的中元素的三個(gè)特性: 1.元素的確定性; 2.元素的互異性; 3.元素的無(wú)序性 說(shuō)明:(1)對(duì)于一個(gè)給定的*,*中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的*的元素。 (2)任何一個(gè)給定的*中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)*時(shí),僅算一個(gè)元素。 (3)*中的元素是平等的,沒(méi)有先后 ,因此判定兩個(gè)*是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。 (4)*元素的三個(gè)特性使*本身具有了確定性和整體性。 3、*的表示:{ … } 如{我校的籃球隊(duì)員},{太平洋大西洋印度洋北冰洋} 1. 用拉丁字母表示*:A={我校的籃球隊(duì)員}B={12345} 2.*的表示方法:列舉法與描述法。 注意啊:常用數(shù)集及其記法: 非負(fù)整數(shù)集(即自然數(shù)集) 記作:N 正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實(shí)數(shù)集R 關(guān)于“屬于”的概念 *的元素通常用小寫(xiě)的拉丁字母表示,如:a是*A的元素,就說(shuō)a屬于*A 記作 a∈A ,相反,a不屬于*A 記作 a?A 列舉法:把*中的元素一一列舉出來(lái),然后用一個(gè)大括號(hào)括上。 描述法:將*中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示*的方法。用確定的條件表示某些對(duì)象是否屬于這個(gè)*的方法。 ①語(yǔ)言描述法:例:{不是直角三角形的三角形} ②數(shù)學(xué)式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2} 4、*的分類: 1.有限集 含有有限個(gè)元素的* 2.無(wú)限集 含有無(wú)限個(gè)元素的* 3.空集 不含任何元素的* 例:{x|x2=-5} 二、*間的基本關(guān)系 1.“包含”關(guān)系子集 注意: 有兩種 (1)A是B的一部分,;(2)A與B是同一*。 反之: *A不包含于*B或*B不包含*A記作A B或B A 2.“相等”關(guān)系(5≥且5≤則5=5) 實(shí)例:設(shè) A={x|x2-1=0} B={-11} “元素相同” 結(jié)論:對(duì)于兩個(gè)*A與B,如果*A的任何一個(gè)元素都是*B的元素,同時(shí)*B的任何一個(gè)元素都是*A的元素,我們就說(shuō)*A等于*B,即:A=B ① 任何一個(gè)*是它本身的子集。A?A ②真子集:如果A?B且A? B那就說(shuō)*A是*B的真子集,記作A B(或B A) ③如果 A?B B?C 那么 A?C ④ 如果A?B 同時(shí) B?A 那么A=B 3. 不含任何元素的*叫做空集,記為Φ 規(guī)定: 空集是任何*的子集, 空集是任何非空*的真子集。 三、*的運(yùn)算 1.交集的定義:一般地,由 屬于A且屬于B的元素所組成的*叫做AB的交集. 記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}. 2、并集的定義:一般地,由所有屬于*A或?qū)儆?B的元素所組成的*,叫做AB的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}. 3、交集與并集的性質(zhì):A∩A = A A∩φ= φ A∩B = B∩A,A∪A = A A∪φ= A A∪B = B∪A. 4、全集與補(bǔ)集 (1)補(bǔ)集:設(shè)S是一個(gè)*,A是S的一個(gè)子集(即 ),由S中所有不屬于A的元素組成的*,叫做S中子集A的補(bǔ)集(或余集) 記作: CSA 即 CSA ={x ? x?S且 x?A} (2)全集:如果*S含有我們所要研究的 *的全部元素,這個(gè)*就可以看作一個(gè)全集。通常用U來(lái)表示。 (3)性質(zhì):⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U 二、函數(shù)的有關(guān)概念 1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于*A中的任意一個(gè)數(shù)x,在*B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從*A到*B的一個(gè)函數(shù).記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的*{f(x)| x∈A }叫做函數(shù)的值域.
高中數(shù)學(xué)必修5 知識(shí)點(diǎn)
去百度文庫(kù),查看完整內(nèi)容>內(nèi)容來(lái)自用戶:袁會(huì)芳高中數(shù)學(xué)必修5知識(shí)點(diǎn)(一)解三角形:1、正弦定理:在中,、、分別為角、、的對(duì)邊,,則有(為的外接圓的半徑)2、正弦定理的變形公式:,,;,,;;3、三角形面積公式:.4、余弦定理:在中,有,推論:(二)數(shù)列:1.數(shù)列的有關(guān)概念:(1)數(shù)列:按照一定次序排列的一列數(shù)。數(shù)列是有序的。數(shù)列是定義在自然數(shù)N*或它的有限子集(2)通項(xiàng)公式:數(shù)列的第n項(xiàng)an與n之間的函數(shù)關(guān)系用一個(gè)公式來(lái)表示,這個(gè)公式即是該數(shù)列的通項(xiàng)公式。如:。(3)遞推公式:已知數(shù)列如:。2.?dāng)?shù)列的表示方法:(1)列舉法:如…(2)圖象法:用(n, an)孤立點(diǎn)表示。(3)解析法:用通項(xiàng)公式表示。(4)遞推法:用遞推公式表示。3.?dāng)?shù)列的分類:4.?dāng)?shù)列5.等差數(shù)列與等比數(shù)列對(duì)比小結(jié):等差數(shù)列|等比數(shù)列|一、定義|二、公式|1. |2. |1. |2. |三、性質(zhì)|1.,|稱為與的等差中項(xiàng)|2.若(、、、), 則|3.,,成等差數(shù)列|1.,|稱為與的等比中項(xiàng)|2.若(、、、),則|3.,,成等比數(shù)列|(
解三角形:正弦定理、余弦定理數(shù)列、解不等式、平面規(guī)劃、基本不等式運(yùn)用
這里如果看不清楚 這里很多的圖像都無(wú)法顯示 你加我* 964672189 我給你發(fā)word 還望采納 高中數(shù)學(xué)必修5知識(shí)點(diǎn) 1、正弦定理:在中,、、分別為角、、的對(duì)邊,為的外接圓的半徑,則有. 2、正弦定理的變形公式:①,,; ②,,; ③; ④. 3、三角形面積公式:. 4、余弦定理:在中,有,, . 5、余弦定理的推論:,,. 6、設(shè)、、是的角、、的對(duì)邊,則:①若,則; ②若,則;③若,則. 7、數(shù)列:按照一定順序排列著的一列數(shù). 8、數(shù)列的項(xiàng):數(shù)列中的每一個(gè)數(shù). 9、有窮數(shù)列:項(xiàng)數(shù)有限的數(shù)列. 10、無(wú)窮數(shù)列:項(xiàng)數(shù)無(wú)限的數(shù)列. 11、遞增數(shù)列:從第2項(xiàng)起,每一項(xiàng)都不小于它的前一項(xiàng)的數(shù)列. 12、遞減數(shù)列:從第2項(xiàng)起,每一項(xiàng)都不大于它的前一項(xiàng)的數(shù)列. 13、常數(shù)列:各項(xiàng)相等的數(shù)列. 14、擺動(dòng)數(shù)列:從第2項(xiàng)起,有些項(xiàng)大于它的前一項(xiàng),有些項(xiàng)小于它的前一項(xiàng)的數(shù)列. 15、數(shù)列的通項(xiàng)公式:表示數(shù)列的第項(xiàng)與序號(hào)之間的關(guān)系的公式. 16、數(shù)列的遞推公式:表示任一項(xiàng)與它的前一項(xiàng)(或前幾項(xiàng))間的關(guān)系的公式. 17、如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),則這個(gè)數(shù)列稱為等差數(shù)列,這個(gè)常數(shù)稱為等差數(shù)列的公差. 18、由三個(gè)數(shù),,組成的等差數(shù)列可以看成最簡(jiǎn)單的等差數(shù)列,則稱為與的等差中項(xiàng).若,則稱為與的等差中項(xiàng). 19、若等差數(shù)列的首項(xiàng)是,公差是,則. 20、通項(xiàng)公式的變形:①;②;③; ④;⑤. 21、若是等差數(shù)列,且(、、、),則;若是等差數(shù)列,且(、、),則. 22、等差數(shù)列的前項(xiàng)和的公式:①;②. 23、等差數(shù)列的前項(xiàng)和的性質(zhì):①若項(xiàng)數(shù)為,則,且,. ②若項(xiàng)數(shù)為,則,且,(其中,). 24、如果一個(gè)數(shù)列從第項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù),則這個(gè)數(shù)列稱為等比數(shù)列,這個(gè)常數(shù)稱為等比數(shù)列的公比. 25、在與中間插入一個(gè)數(shù),使,,成等比數(shù)列,則稱為與的等比中項(xiàng).若,則稱為與的等比中項(xiàng). 26、若等比數(shù)列的首項(xiàng)是,公比是,則. 27、通項(xiàng)公式的變形:①;②;③;④. 28、若是等比數(shù)列,且(、、、),則;若是等比數(shù)列,且(、、),則. 29、等比數(shù)列的前項(xiàng)和的公式:. 30、等比數(shù)列的前項(xiàng)和的性質(zhì):①若項(xiàng)數(shù)為,則. ②. ③,,成等比數(shù)列. 31、;;. 32、不等式的性質(zhì): ①;②;③; ④,;⑤; ⑥;⑦; ⑧. 33、一元二次不等式:只含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是的不等式. 34、二次函數(shù)的圖象、一元二次方程的根、一元二次不等式的解集間的關(guān)系: 判別式 二次函數(shù) 的圖象 一元二次方程 的根 有兩個(gè)相異實(shí)數(shù)根 有兩個(gè)相等實(shí)數(shù)根 沒(méi)有實(shí)數(shù)根 一元二次不等式的解集 35、二元一次不等式:含有兩個(gè)未知數(shù),并且未知數(shù)的次數(shù)是的不等式. 36、二元一次不等式組:由幾個(gè)二元一次不等式組成的不等式組. 37、二元一次不等式(組)的解集:滿足二元一次不等式組的和的取值構(gòu)成有序數(shù)對(duì),所有這樣的有序數(shù)對(duì)構(gòu)成的*. 38、在平面直角坐標(biāo)系中,已知直線,坐標(biāo)平面內(nèi)的點(diǎn). ①若,,則點(diǎn)在直線的上方. ②若,,則點(diǎn)在直線的下方. 39、在平面直角坐標(biāo)系中,已知直線. ①若,則表示直線上方的區(qū)域;表示直線下方的區(qū)域. ②若,則表示直線下方的區(qū)域;表示直線上方的區(qū)域. 40、線性約束條件:由,的不等式(或方程)組成的不等式組,是,的線性約束條件. 目標(biāo)函數(shù):欲達(dá)到最大值或最小值所涉及的變量,的解析式. 線性目標(biāo)函數(shù):目標(biāo)函數(shù)為,的一次解析式. 線性規(guī)劃問(wèn)題:求線性目標(biāo)函數(shù)在線性約束條件下的最大值或最小值問(wèn)題. 可行解:滿足線性約束條件的解. 可行域:所有可行解組成的*. 最優(yōu)解:使目標(biāo)函數(shù)取得最大值或最小值的可行解. 41、設(shè)、是兩個(gè)正數(shù),則稱為正數(shù)、的算術(shù)平均數(shù),稱為正數(shù)、的幾何平均數(shù). 42、均值不等式定理: 若,,則,即. 43、常用的基本不等式:①;②; ③;④. 44、極值定理:設(shè)、都為正數(shù),則有 ⑴若(和為定值),則當(dāng)時(shí),積取得最大值. ⑵若(積為定值),則當(dāng)時(shí),和取得最小值.
高一數(shù)學(xué)知識(shí)點(diǎn) 總結(jié)
高一數(shù)學(xué)必修1第一章知識(shí)點(diǎn)總結(jié)一、*有關(guān)概念1. *的含義2. *的中元素的三個(gè)特性:(1) 元素的確定性,(2) 元素的互異性,(3) 元素的無(wú)序性, 3.*的表示:(1) 用拉丁字母表示*:a=(2) *的表示方法:列舉法與描述法。? 注意:常用數(shù)集及其記法:非負(fù)整數(shù)集(即自然數(shù)集) 記作:n正整數(shù)集 n*或 n+ 整數(shù)集z 有理數(shù)集q 實(shí)數(shù)集r1) 列舉法:2) 描述法:將*中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示*的方法。3) 語(yǔ)言描述法:例:4) venn圖:4、*的分類:(1) 有限集 含有有限個(gè)元素的*(2) 無(wú)限集 含有無(wú)限個(gè)元素的*(3) 空集 不含任何元素的* 例:二、*間的基本關(guān)系1.“包含”關(guān)系—子集注意: 有兩種可能(1)a是的一部分,;(2)a與是同一*。反之: *a不包含于*,或*不包含*a,記作a 或 a2.“相等”關(guān)系:a= (5≥且5≤則5=5)實(shí)例:設(shè) a=即:① 任何一個(gè)*是它本身的子集。a?a②真子集:如果a?,且a? 那就說(shuō)*a是*的真子集,記作a (或 a)③如果 a?, ?c ,那么 a?c④ 如果a? 同時(shí) ?a 那么a=3. 不含任何元素的*叫做空集,記為φ規(guī)定: 空集是任何*的子集, 空集是任何非空*的真子集。? 有n個(gè)元素的*,含有2n個(gè)子集,2n-1個(gè)真子集三、*的運(yùn)算運(yùn)算類型 交 集 并 集 補(bǔ) 集定 義 由所有屬于a且屬于的元素所組成的*,叫做a,的交集.記作a (讀作a交),即a ={x|x a,且x }.由所有屬于*a或?qū)儆?的元素所組成的*,叫做a,的并集.記作:a (讀作a并),即a =設(shè)s是一個(gè)*,a是s的一個(gè)子集,由s中所有不屬于a的元素組成的*,叫做s中子集a的補(bǔ)集(或余集)記作 ,即csa= 韋恩圖示 性 質(zhì) a a=a a φ=φa = aa a a a a=aa φ=aa = aa aa (cua) (cu)= cu (a )(cua) (cu)= cu(a )a (cua)=ua (cua)= φ.例題:1.下列四組對(duì)象,能構(gòu)成*的是 ( )a某班所有高個(gè)子的學(xué)生 著名的藝術(shù)家 c一切很大的書(shū) d 倒數(shù)等于它自身的實(shí)數(shù)2.*3.若*m=4.設(shè)*a= ,= ,若a ,則 的取值范圍是 5.50名學(xué)生做的物理、化學(xué)兩種實(shí)驗(yàn),已知物理實(shí)驗(yàn)做得正確得有40人,化學(xué)實(shí)驗(yàn)做得正確得有31人,兩種實(shí)驗(yàn)都做錯(cuò)得有4人,則這兩種實(shí)驗(yàn)都做對(duì)的有 人。6. 用描述法表示圖中陰影部分的點(diǎn)(含邊界上的點(diǎn))組成的*m= .7.已知*a=二、函數(shù)的有關(guān)概念1.函數(shù)的概念:設(shè)a、是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于*a中的任意一個(gè)數(shù)x,在*中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:a→為從*a到*的一個(gè)函數(shù).記作: y=f(x),x∈a.其中,x叫做自變量,x的取值范圍a叫做函數(shù)的定義域;與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的*注意:1.定義域:能使函數(shù)式有意義的實(shí)數(shù)x的*稱為函數(shù)的定義域。求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:(1)分式的分母不等于零; (2)偶次方根的被開(kāi)方數(shù)不小于零; (3)對(duì)數(shù)式的真數(shù)必須大于零;(4)指數(shù)、對(duì)數(shù)式的底必須大于零且不等于1. (5)如果函數(shù)是由一些基本函數(shù)通過(guò)四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的*.(6)指數(shù)為零底不可以等于零, (7)實(shí)際問(wèn)題中的函數(shù)的定義域還要保證實(shí)際問(wèn)題有意義.? 相同函數(shù)的判斷方法:①表達(dá)式相同(與表示自變量和函數(shù)值的字母無(wú)關(guān));②定義域一致 (兩點(diǎn)必須同時(shí)具備)(見(jiàn)課本21頁(yè)相關(guān)例2)2.值域 : 先考慮其定義域(1)觀察法 (2)配方法(3)代換法3. 函數(shù)圖象知識(shí)歸納(1)定義:在平面直角坐標(biāo)系中,以函數(shù) y=f(x) , (x∈a)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)p(x,y)的*c,叫做函數(shù) y=f(x),(x ∈a)的圖象.c上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過(guò)來(lái),以滿足y=f(x)的每一組有序?qū)崝?shù)對(duì)x、y為坐標(biāo)的點(diǎn)(x,y),均在c上 . (2) 畫(huà)法a、 描點(diǎn)法:、 圖象變換法常用變換方法有三種1) 平移變換2) 伸縮變換3) 對(duì)稱變換4.區(qū)間的概念(1)區(qū)間的分類:開(kāi)區(qū)間、閉區(qū)間、半開(kāi)半閉區(qū)間(2)無(wú)窮區(qū)間(3)區(qū)間的數(shù)軸表示.5.映射一般地,設(shè)a、是兩個(gè)非空的*,如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于*a中的任意一個(gè)元素x,在*中都有唯一確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:a 為從*a到*的一個(gè)映射。記作f:a→6.分段函數(shù) (1)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。(2)各部分的自變量的取值情況.(3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.補(bǔ)充:復(fù)合函數(shù)如果y=f(u)(u∈m),u=g(x)(x∈a),則 y=f[g(x)]=f(x)(x∈a) 稱為f、g的復(fù)合函數(shù)。 二.函數(shù)的性質(zhì)1.函數(shù)的單調(diào)性(局部性質(zhì))(1)增函數(shù)設(shè)函數(shù)y=f(x)的定義域?yàn)閕,如果對(duì)于定義域i內(nèi)的某個(gè)區(qū)間d內(nèi)的任意兩個(gè)自變量xx當(dāng)x1如果對(duì)于區(qū)間d上的任意兩個(gè)自變量的值xx當(dāng)x1注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);(2) 圖象的特點(diǎn)如果函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說(shuō)函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.(3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法(a) 定義法:○1 任取xx2∈d,且x1○2 作差f(x1)-f(x2);○3 變形(通常是因式分解和配方);○4 定號(hào)(即判斷差f(x1)-f(x2)的正負(fù));○5 下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間d上的單調(diào)性).()圖象法(從圖象上看升降)(c)復(fù)合函數(shù)的單調(diào)性復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫(xiě)成其并集. 8.函數(shù)的奇偶性(整體性質(zhì))(1)偶函數(shù)一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).(2).奇函數(shù)一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).(3)具有奇偶性的函數(shù)的圖象的特征偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.利用定義判斷函數(shù)奇偶性的步驟:○1首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點(diǎn)對(duì)稱;○2確定f(-x)與f(x)的關(guān)系;○3作出相應(yīng)結(jié)論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數(shù);若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數(shù).(2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來(lái)判定; (3)利用定理,或借助函數(shù)的圖象判定 .9、函數(shù)的解析表達(dá)式(1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對(duì)應(yīng)法則,二是要求出函數(shù)的定義域.(2)求函數(shù)的解析式的主要方法有:1) 湊配法2) 待定系數(shù)法3) 換元法4) 消參法10.函數(shù)最大(?。┲担ǘx見(jiàn)課本p36頁(yè))○1 利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(?。┲怠? 利用圖象求函數(shù)的最大(小)值○3 利用函數(shù)單調(diào)性的判斷函數(shù)的最大(?。┲担喝绻瘮?shù)y=f(x)在區(qū)間[a,]上單調(diào)遞增,在區(qū)間[,c]上單調(diào)遞減則函數(shù)y=f(x)在x=處有最大值f();如果函數(shù)y=f(x)在區(qū)間[a,]上單調(diào)遞減,在區(qū)間[,c]上單調(diào)遞增則函數(shù)y=f(x)在x=處有最小值f();例題:1.求下列函數(shù)的定義域:⑴ ⑵ 2.設(shè)函數(shù) 的定義域?yàn)?,則函數(shù) 的定義域?yàn)開(kāi) _ 3.若函數(shù) 的定義域?yàn)?,則函數(shù) 的定義域是 4.函數(shù) ,若 ,則 = 6.已知函數(shù) ,求函數(shù) , 的解析式7.已知函數(shù) 滿足 ,則 = 。8.設(shè) 是r上的奇函數(shù),且當(dāng) 時(shí), ,則當(dāng) 時(shí) = 在r上的解析式為 9.求下列函數(shù)的單調(diào)區(qū)間: ⑴ (2) 10.判斷函數(shù) 的單調(diào)性并證明你的結(jié)論.11.設(shè)函數(shù) 判斷它的奇偶性并且求證: .
*這是高中數(shù)學(xué)的全部公式*三角函數(shù)公式表 同角三角函數(shù)的基本關(guān)系式 倒數(shù)關(guān)系: 商的關(guān)系: 平方關(guān)系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α (六邊形記憶法:圖形結(jié)構(gòu)“上弦中切下割,左正右余中間1”;記憶方法“對(duì)角線上兩個(gè)函數(shù)的積為1;陰影三角形上兩頂點(diǎn)的三角函數(shù)值的平方和等于下頂點(diǎn)的三角函數(shù)值的平方;任意一頂點(diǎn)的三角函數(shù)值等于相鄰兩個(gè)頂點(diǎn)的三角函數(shù)值的乘積?!保? 誘導(dǎo)公式(口訣:奇變偶不變,符號(hào)看象限。) sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 兩角和與差的三角函數(shù)公式 萬(wàn)能公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1-tanα ·tanβ tanα-tanβ tan(α-β)=—————— 1+tanα ·tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2) cosα=—————— 1+tan2(α/2) 2tan(α/2) tanα=—————— 1-tan2(α/2) 半角的正弦、余弦和正切公式 三角函數(shù)的降冪公式 二倍角的正弦、余弦和正切公式 三倍角的正弦、余弦和正切公式 sin2α=2sinαcosα cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α 2tanα tan2α=————— 1-tan2α sin3α=3sinα-4sin3α cos3α=4cos3α-3cosα 3tanα-tan3α tan3α=—————— 1-3tan2α 三角函數(shù)的和差化積公式 三角函數(shù)的積化和差公式 α+β α-β sinα+sinβ=2sin———·cos——— 2 2 α+β α-β sinα-sinβ=2cos———·sin——— 2 2 α+β α-β cosα+cosβ=2cos———·cos——— 2 2 α+β α-β cosα-cosβ=-2sin———·sin——— 2 2 1 sinα ·cosβ=-[sin(α+β)+sin(α-β)] 2 1 cosα ·sinβ=-[sin(α+β)-sin(α-β)] 2 1 cosα ·cosβ=-[cos(α+β)+cos(α-β)] 2 1 sinα ·sinβ=— -[cos(α+β)-cos(α-β)] 2 化asinα ±cosα為一個(gè)角的一個(gè)三角函數(shù)的形式(輔助角的三角函數(shù)的公式*、函數(shù) * 簡(jiǎn)單邏輯 任一x∈A x∈B,記作A B A B,B A A=B A B=A B=card(A B)=card(A)+card(B)-card(A B) (1)命題 原命題 若p則q 逆命題 若q則p 否命題 若 p則 q 逆否命題 若 q,則 p (2)四種命題的關(guān)系 (3)A B,A是B成立的充分條件 B A,A是B成立的必要條件 A B,A是B成立的充要條件 函數(shù)的性質(zhì) 指數(shù)和對(duì)數(shù) (1)定義域、值域、對(duì)應(yīng)法則 (2)單調(diào)性 對(duì)于任意xx2∈D 若x1<x2 f(x1)<f(x2),稱f(x)在D上是增函數(shù) 若x1<x2 f(x1)>f(x2),稱f(x)在D上是減函數(shù) (3)奇偶性 對(duì)于函數(shù)f(x)的定義域內(nèi)的任一x,若f(-x)=f(x),稱f(x)是偶函數(shù) 若f(-x)=-f(x),稱f(x)是奇函數(shù) (4)周期性 對(duì)于函數(shù)f(x)的定義域內(nèi)的任一x,若存在常數(shù)T,使得f(x+T)=f(x),則稱f(x)是周期函數(shù) (1)分?jǐn)?shù)指數(shù)冪 正分?jǐn)?shù)指數(shù)冪的意義是 負(fù)分?jǐn)?shù)指數(shù)冪的意義是 (2)對(duì)數(shù)的性質(zhì)和運(yùn)算法則 loga(MN)=logaM+logaN logaMn=nlogaM(n∈R) 指數(shù)函數(shù) 對(duì)數(shù)函數(shù) (1)y=ax(a>0,a≠1)叫指數(shù)函數(shù) (2)x∈R,y>0 圖象經(jīng)過(guò)(0,1) a>1時(shí),x>0,y>1;x<0,0<y<1 0<a<1時(shí),x>0,0<y<1;x<0,y>1 a> 1時(shí),y=ax是增函數(shù) 0<a<1時(shí),y=ax是減函數(shù) (1)y=logax(a>0,a≠1)叫對(duì)數(shù)函數(shù) (2)x>0,y∈R 圖象經(jīng)過(guò)(0) a>1時(shí),x>y>0;0<x<y<0 0<a<1時(shí),x>y<0;0<x<y>0 a>1時(shí),y=logax是增函數(shù) 0<a<1時(shí),y=logax是減函數(shù) 指數(shù)方程和對(duì)數(shù)方程 基本型 logaf(x)= f(x)=a(a>0,a≠1) 同底型 logaf(x)=logag(x) f(x)=g(x)>0(a>0,a≠1) 換元型 f(ax)=0或f (logax)=0 數(shù)列 數(shù)列的基本概念 等差數(shù)列 (1)數(shù)列的通項(xiàng)公式an=f(n) (2)數(shù)列的遞推公式 (3)數(shù)列的通項(xiàng)公式與前n項(xiàng)和的關(guān)系 an+1-an=d an=a1+(n-1)d a,A,成等差 2A=a+ m+n=k+l am+an=ak+al 等比數(shù)列 常用求和公式 an=a1qn_1 a,G,成等比 G2=a m+n=k+l aman=akal 不等式 不等式的基本性質(zhì) 重要不等式 a> <a a>,>c a>c a> a+c>+c a+>c a>c- a>,c>d a+c>+d a>,c>0 ac>c a>,c<0 ac<c a>>0,c>d>0 ac<d a>>0 dn>n(n∈Z,n>1) a>>0 > (n∈Z,n>1) (a-)2≥0 a,∈R a2+2≥2a |a|-||≤|a±|≤|a|+|| 證明不等式的基本方法 比較法 (1)要證明不等式a>(或a<),只需證明 a->0(或a-<0=即可 (2)若>0,要證a>,只需證明 , 要證a<,只需證明 綜合法 綜合法就是從已知或已證明過(guò)的不等式出發(fā),根據(jù)不等式的性質(zhì)推導(dǎo)出欲證的不等式(由因?qū)Ч┑姆椒ā? 分析法 分析法是從尋求結(jié)論成立的充分條件入手,逐步尋求所需條件成立的充分條件,直至所需的條件已知正確時(shí)為止,明顯地表現(xiàn)出“持果索因” 復(fù)數(shù) 代數(shù)形式 三角形式 a+i=c+di a=c,=d (a+i)+(c+di)=(a+c)+(+d)i (a+i)-(c+di)=(a-c)+(-d)i (a+i)(c+di )=(ac-d)+(c+ad)i a+i=r(cosθ+isinθ) r1=(cosθ1+isinθ1)?r2(cosθ2+isinθ2) =r1?r2〔cos(θ1+θ2)+isin(θ1+θ2)〕 〔r(cosθ+sinθ)〕n=rn(cosnθ+isinnθ) k=0,……,n-1 解析幾何 1、直線 兩點(diǎn)距離、定比分點(diǎn) 直線方程 |AB|=| | |P1P2|= y-y1=k(x-x1) y=kx+ 兩直線的位置關(guān)系 夾角和距離 或k1=k且1≠2 l1與l2重合 或k1=k2且1=2 l1與l2相交 或k1≠k2 l2⊥l2 或k1k2=-1 l1到l2的角 l1與l2的夾角 點(diǎn)到直線的距離 2.圓錐曲線 圓 橢 圓 標(biāo)準(zhǔn)方程(x-a)2+(y-)2=r2 圓心為(a,),半徑為R 一般方程x2+y2+Dx+Ey+F=0 其中圓心為( ), 半徑r (1)用圓心到直線的距離d和圓的半徑r判斷或用判別式判斷直線與圓的位置關(guān)系 (2)兩圓的位置關(guān)系用圓心距d與半徑和與差判斷 橢圓 焦點(diǎn)F1(-c,0),F(xiàn)2(c,0) (2=a2-c2) 離心率 準(zhǔn)線方程 焦半徑|MF1|=a+ex0,|MF2|=a-ex0 雙曲線 拋物線 雙曲線 焦點(diǎn)F1(-c,0),F(xiàn)2(c,0) (a,>0,2=c2-a2) 離心率 準(zhǔn)線方程 焦半徑|MF1|=ex0+a,|MF2|=ex0-a 拋物線y2=2px(p>0) 焦點(diǎn)F 準(zhǔn)線方程 坐標(biāo)軸的平移 這里(h,k)是新坐標(biāo)系的原點(diǎn)在原坐標(biāo)系中的坐標(biāo)。1.*元素具有①確定性②互異性③無(wú)序性2.*表示方法①列舉法 ②描述法③韋恩圖 ④數(shù)軸法3.*的運(yùn)算⑴ A∩(B∪C)=(A∩B)∪(A∩C)⑵ Cu(A∩B)=CuA∪CuBCu(A∪B)=CuA∩CuB4.*的性質(zhì)⑴n元*的子集數(shù):2n真子集數(shù):2n-1;非空真子集數(shù):2n-2高中數(shù)學(xué)概念總結(jié)一、 函數(shù)1、 若*A中有n 個(gè)元素,則*A的所有不同的子集個(gè)數(shù)為 ,所有非空真子集的個(gè)數(shù)是 。二次函數(shù) 的圖象的對(duì)稱軸方程是 ,頂點(diǎn)坐標(biāo)是 。用待定系數(shù)法求二次函數(shù)的解析式時(shí),解析式的設(shè)法有三種形式,即 , 和 (頂點(diǎn)式)。2、 冪函數(shù) ,當(dāng)n為正奇數(shù),m為正偶數(shù),m
高1的數(shù)學(xué)知識(shí)清單
高中高一數(shù)學(xué)必修1各章知識(shí)點(diǎn)總結(jié)第一章 *與函數(shù)概念一、*有關(guān)概念1、*的含義:某些指定的對(duì)象集在一起就成為一個(gè)*,其中每一個(gè)對(duì)象叫元素。2、*的中元素的三個(gè)特性:1.元素的確定性; 2.元素的互異性; 3.元素的無(wú)序性說(shuō)明:(1)對(duì)于一個(gè)給定的*,*中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的*的元素。(2)任何一個(gè)給定的*中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)*時(shí),僅算一個(gè)元素。(3)*中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)*是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。(4)*元素的三個(gè)特性使*本身具有了確定性和整體性。3、*的表示:1. 用拉丁字母表示*:A=2.*的表示方法:列舉法與描述法。注意啊:常用數(shù)集及其記法:非負(fù)整數(shù)集(即自然數(shù)集)記作:N正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實(shí)數(shù)集R關(guān)于“屬于”的概念*的元素通常用小寫(xiě)的拉丁字母表示,如:a是*A的元素,就說(shuō)a屬于*A 記作 a∈A ,相反,a不屬于*A 記作 a?A列舉法:把*中的元素一一列舉出來(lái),然后用一個(gè)大括號(hào)括上。描述法:將*中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示*的方法。用確定的條件表示某些對(duì)象是否屬于這個(gè)*的方法。①語(yǔ)言描述法:例:②數(shù)學(xué)式子描述法:例:不等式x-3>2的解集是4、*的分類:1.有限集 含有有限個(gè)元素的*2.無(wú)限集 含有無(wú)限個(gè)元素的*3.空集 不含任何元素的* 例:二、*間的基本關(guān)系1.“包含”關(guān)系—子集注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一*。反之: *A不包含于*B,或*B不包含*A,記作A B或B A2.“相等”關(guān)系(5≥且5≤則5=5)實(shí)例:設(shè) A=結(jié)論:對(duì)于兩個(gè)*A與B,如果*A的任何一個(gè)元素都是*B的元素,同時(shí),*B的任何一個(gè)元素都是*A的元素,我們就說(shuō)*A等于*B,即:A=B① 任何一個(gè)*是它本身的子集。AíA②真子集:如果AíB,且A1 B那就說(shuō)*A是*B的真子集,記作A B(或B A)③如果 AíB, BíC ,那么 AíC④ 如果AíB 同時(shí) BíA 那么A=B3. 不含任何元素的*叫做空集,記為Φ規(guī)定: 空集是任何*的子集, 空集是任何非空*的真子集。三、*的運(yùn)算1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的*,叫做A,B的交集.記作A∩B(讀作”A交B”),即A∩B=2、并集的定義:一般地,由所有屬于*A或?qū)儆?B的元素所組成的*,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B=3、交集與并集的性質(zhì):A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,A∪φ= A ,A∪B = B∪A.4、全集與補(bǔ)集(1)補(bǔ)集:設(shè)S是一個(gè)*,A是S的一個(gè)子集(即 ),由S中所有不屬于A的元素組成的*,叫做S中子集A的補(bǔ)集(或余集)記作: CSA 即 CSA =SCsAA(2)全集:如果*S含有我們所要研究的各個(gè)*的全部元素,這個(gè)*就可以看作一個(gè)全集。通常用U來(lái)表示。(3)性質(zhì):⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U二、函數(shù)的有關(guān)概念1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于*A中的任意一個(gè)數(shù)x,在*B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從*A到*B的一個(gè)函數(shù).記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的*注意:2如果只給出解析式y(tǒng)=f(x),而沒(méi)有指明它的定義域,則函數(shù)的定義域即是指能使這個(gè)式子有意義的實(shí)數(shù)的*;3 函數(shù)的定義域、值域要寫(xiě)成*或區(qū)間的形式.定義域補(bǔ)充能使函數(shù)式有意義的實(shí)數(shù)x的*稱為函數(shù)的定義域,求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:(1)分式的分母不等于零; (2)偶次方根的被開(kāi)方數(shù)不小于零; (3)對(duì)數(shù)式的真數(shù)必須大于零;(4)指數(shù)、對(duì)數(shù)式的底必須大于零且不等于1. (5)如果函數(shù)是由一些基本函數(shù)通過(guò)四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的*.(6)指數(shù)為零底不可以等于零 (6)實(shí)際問(wèn)題中的函數(shù)的定義域還要保證實(shí)際問(wèn)題有意義.(又注意:求出不等式組的解集即為函數(shù)的定義域。)構(gòu)成函數(shù)的三要素:定義域、對(duì)應(yīng)關(guān)系和值域再注意:(1)構(gòu)成函數(shù)三個(gè)要素是定義域、對(duì)應(yīng)關(guān)系和值域.由于值域是由定義域和對(duì)應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全一致,即稱這兩個(gè)函數(shù)相等(或?yàn)橥缓瘮?shù))(2)兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對(duì)應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無(wú)關(guān)。相同函數(shù)的判斷方法:①表達(dá)式相同;②定義域一致 (兩點(diǎn)必須同時(shí)具備)(見(jiàn)課本21頁(yè)相關(guān)例2)值域補(bǔ)充(1)、函數(shù)的值域取決于定義域和對(duì)應(yīng)法則,不論采取什么方法求函數(shù)的值域都應(yīng)先考慮其定義域. (2).應(yīng)熟悉掌握一次函數(shù)、二次函數(shù)、指數(shù)、對(duì)數(shù)函數(shù)及各三角函數(shù)的值域,它是求解復(fù)雜函數(shù)值域的基礎(chǔ)。3. 函數(shù)圖象知識(shí)歸納(1)定義:在平面直角坐標(biāo)系中,以函數(shù) y=f(x) , (x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的*C,叫做函數(shù) y=f(x),(x ∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過(guò)來(lái),以滿足y=f(x)的每一組有序?qū)崝?shù)對(duì)x、y為坐標(biāo)的點(diǎn)(x,y),均在C上 . 即記為C=圖象C一般的是一條光滑的連續(xù)曲線(或直線),也可能是由與任意平行與Y軸的直線最多只有一個(gè)交點(diǎn)的若干條曲線或離散點(diǎn)組成。(2) 畫(huà)法A、描點(diǎn)法:根據(jù)函數(shù)解析式和定義域,求出x,y的一些對(duì)應(yīng)值并列表,以(x,y)為坐標(biāo)在坐標(biāo)系內(nèi)描出相應(yīng)的點(diǎn)P(x, y),最后用平滑的曲線將這些點(diǎn)連接起來(lái).B、圖象變換法(請(qǐng)參考必修4三角函數(shù))常用變換方法有三種,即平移變換、伸縮變換和對(duì)稱變換(3)作用:1、直觀的看出函數(shù)的性質(zhì);2、利用數(shù)形結(jié)合的方法分析解題的思路。提高解題的速度。發(fā)現(xiàn)解題中的錯(cuò)誤。4.快去了解區(qū)間的概念(1)區(qū)間的分類:開(kāi)區(qū)間、閉區(qū)間、半開(kāi)半閉區(qū)間;(2)無(wú)窮區(qū)間;(3)區(qū)間的數(shù)軸表示.5.什么叫做映射一般地,設(shè)A、B是兩個(gè)非空的*,如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于*A中的任意一個(gè)元素x,在*B中都有唯一確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:A B為從*A到*B的一個(gè)映射。記作“f:A B”給定一個(gè)*A到B的映射,如果a∈A,∈B.且元素a和元素對(duì)應(yīng),那么,我們把元素叫做元素a的象,元素a叫做元素的原象說(shuō)明:函數(shù)是一種特殊的映射,映射是一種特殊的對(duì)應(yīng),①*A、B及對(duì)應(yīng)法則f是確定的;②對(duì)應(yīng)法則有“方向性”,即強(qiáng)調(diào)從*A到*B的對(duì)應(yīng),它與從B到A的對(duì)應(yīng)關(guān)系一般是不同的;③對(duì)于映射f:A→B來(lái)說(shuō),則應(yīng)滿足:(Ⅰ)*A中的每一個(gè)元素,在*B中都有象,并且象是唯一的;(Ⅱ)*A中不同的元素,在*B中對(duì)應(yīng)的象可以是同一個(gè);(Ⅲ)不要求*B中的每一個(gè)元素在*A中都有原象。常用的函數(shù)表示法及各自的優(yōu)點(diǎn):1 函數(shù)圖象既可以是連續(xù)的曲線,也可以是直線、折線、離散的點(diǎn)等等,注意判斷一個(gè)圖形是否是函數(shù)圖象的依據(jù);2 解析法:必須注明函數(shù)的定義域;3 圖象法:描點(diǎn)法作圖要注意:確定函數(shù)的定義域;化簡(jiǎn)函數(shù)的解析式;觀察函數(shù)的特征;4 列表法:選取的自變量要有代表性,應(yīng)能反映定義域的特征.注意?。航馕龇ǎ罕阌谒愠龊瘮?shù)值。列表法:便于查出函數(shù)值。圖象法:便于量出函數(shù)值補(bǔ)充一:分段函數(shù) (參見(jiàn)課本P24-25)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。在不同的范圍里求函數(shù)值時(shí)必須把自變量代入相應(yīng)的表達(dá)式。分段函數(shù)的解析式不能寫(xiě)成幾個(gè)不同的方程,而就寫(xiě)函數(shù)值幾種不同的表達(dá)式并用一個(gè)左大括號(hào)括起來(lái),并分別注明各部分的自變量的取值情況.(1)分段函數(shù)是一個(gè)函數(shù),不要把它誤認(rèn)為是幾個(gè)函數(shù);(2)分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集.補(bǔ)充二:復(fù)合函數(shù)如果y=f(u),(u∈M),u=g(x),(x∈A),則 y=f[g(x)]=F(x),(x∈A) 稱為f、g的復(fù)合函數(shù)。例如: y=2sinX y=2cos(X2+1)7.函數(shù)單調(diào)性(1).增函數(shù)設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果對(duì)于定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)的任意兩個(gè)自變量xx當(dāng)x1
高中高一數(shù)學(xué)必修1各章知識(shí)點(diǎn)總結(jié)第一章 *與函數(shù)概念一、*有關(guān)概念1、*的含義:某些指定的對(duì)象集在一起就成為一個(gè)*,其中每一個(gè)對(duì)象叫元素。2、*的中元素的三個(gè)特性:1.元素的確定性; 2.元素的互異性; 3.元素的無(wú)序性說(shuō)明:(1)對(duì)于一個(gè)給定的*,*中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的*的元素。(2)任何一個(gè)給定的*中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)*時(shí),僅算一個(gè)元素。(3)*中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)*是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。(4)*元素的三個(gè)特性使*本身具有了確定性和整體性。3、*的表示:1. 用拉丁字母表示*:A=2.*的表示方法:列舉法與描述法。注意?。撼S脭?shù)集及其記法:非負(fù)整數(shù)集(即自然數(shù)集)記作:N正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實(shí)數(shù)集R關(guān)于“屬于”的概念*的元素通常用小寫(xiě)的拉丁字母表示,如:a是*A的元素,就說(shuō)a屬于*A 記作 a∈A ,相反,a不屬于*A 記作 a?A列舉法:把*中的元素一一列舉出來(lái),然后用一個(gè)大括號(hào)括上。描述法:將*中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示*的方法。用確定的條件表示某些對(duì)象是否屬于這個(gè)*的方法。①語(yǔ)言描述法:例:②數(shù)學(xué)式子描述法:例:不等式x-3>2的解集是4、*的分類:1.有限集 含有有限個(gè)元素的*2.無(wú)限集 含有無(wú)限個(gè)元素的*3.空集 不含任何元素的* 例:二、*間的基本關(guān)系1.“包含”關(guān)系—子集注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一*。反之: *A不包含于*B,或*B不包含*A,記作A B或B A2.“相等”關(guān)系(5≥且5≤則5=5)實(shí)例:設(shè) A=結(jié)論:對(duì)于兩個(gè)*A與B,如果*A的任何一個(gè)元素都是*B的元素,同時(shí),*B的任何一個(gè)元素都是*A的元素,我們就說(shuō)*A等于*B,即:A=B① 任何一個(gè)*是它本身的子集。AíA②真子集:如果AíB,且A1 B那就說(shuō)*A是*B的真子集,記作A B(或B A)③如果 AíB, BíC ,那么 AíC④ 如果AíB 同時(shí) BíA 那么A=B3. 不含任何元素的*叫做空集,記為Φ規(guī)定: 空集是任何*的子集, 空集是任何非空*的真子集。三、*的運(yùn)算1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的*,叫做A,B的交集.記作A∩B(讀作”A交B”),即A∩B=2、并集的定義:一般地,由所有屬于*A或?qū)儆?B的元素所組成的*,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B=3、交集與并集的性質(zhì):A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,A∪φ= A ,A∪B = B∪A.4、全集與補(bǔ)集(1)補(bǔ)集:設(shè)S是一個(gè)*,A是S的一個(gè)子集(即 ),由S中所有不屬于A的元素組成的*,叫做S中子集A的補(bǔ)集(或余集)記作: CSA 即 CSA =SCsAA(2)全集:如果*S含有我們所要研究的各個(gè)*的全部元素,這個(gè)*就可以看作一個(gè)全集。通常用U來(lái)表示。(3)性質(zhì):⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U二、函數(shù)的有關(guān)概念1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于*A中的任意一個(gè)數(shù)x,在*B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從*A到*B的一個(gè)函數(shù).記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的*注意:2如果只給出解析式y(tǒng)=f(x),而沒(méi)有指明它的定義域,則函數(shù)的定義域即是指能使這個(gè)式子有意義的實(shí)數(shù)的*;3 函數(shù)的定義域、值域要寫(xiě)成*或區(qū)間的形式.定義域補(bǔ)充能使函數(shù)式有意義的實(shí)數(shù)x的*稱為函數(shù)的定義域,求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:(1)分式的分母不等于零; (2)偶次方根的被開(kāi)方數(shù)不小于零; (3)對(duì)數(shù)式的真數(shù)必須大于零;(4)指數(shù)、對(duì)數(shù)式的底必須大于零且不等于1. (5)如果函數(shù)是由一些基本函數(shù)通過(guò)四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的*.(6)指數(shù)為零底不可以等于零 (6)實(shí)際問(wèn)題中的函數(shù)的定義域還要保證實(shí)際問(wèn)題有意義.(又注意:求出不等式組的解集即為函數(shù)的定義域。)構(gòu)成函數(shù)的三要素:定義域、對(duì)應(yīng)關(guān)系和值域再注意:(1)構(gòu)成函數(shù)三個(gè)要素是定義域、對(duì)應(yīng)關(guān)系和值域.由于值域是由定義域和對(duì)應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全一致,即稱這兩個(gè)函數(shù)相等(或?yàn)橥缓瘮?shù))(2)兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對(duì)應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無(wú)關(guān)。相同函數(shù)的判斷方法:①表達(dá)式相同;②定義域一致 (兩點(diǎn)必須同時(shí)具備)(見(jiàn)課本21頁(yè)相關(guān)例2)值域補(bǔ)充(1)、函數(shù)的值域取決于定義域和對(duì)應(yīng)法則,不論采取什么方法求函數(shù)的值域都應(yīng)先考慮其定義域. (2).應(yīng)熟悉掌握一次函數(shù)、二次函數(shù)、指數(shù)、對(duì)數(shù)函數(shù)及各三角函數(shù)的值域,它是求解復(fù)雜函數(shù)值域的基礎(chǔ)。3. 函數(shù)圖象知識(shí)歸納(1)定義:在平面直角坐標(biāo)系中,以函數(shù) y=f(x) , (x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的*C,叫做函數(shù) y=f(x),(x ∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過(guò)來(lái),以滿足y=f(x)的每一組有序?qū)崝?shù)對(duì)x、y為坐標(biāo)的點(diǎn)(x,y),均在C上 . 即記為C=圖象C一般的是一條光滑的連續(xù)曲線(或直線),也可能是由與任意平行與Y軸的直線最多只有一個(gè)交點(diǎn)的若干條曲線或離散點(diǎn)組成。(2) 畫(huà)法A、描點(diǎn)法:根據(jù)函數(shù)解析式和定義域,求出x,y的一些對(duì)應(yīng)值并列表,以(x,y)為坐標(biāo)在坐標(biāo)系內(nèi)描出相應(yīng)的點(diǎn)P(x, y),最后用平滑的曲線將這些點(diǎn)連接起來(lái).B、圖象變換法(請(qǐng)參考必修4三角函數(shù))常用變換方法有三種,即平移變換、伸縮變換和對(duì)稱變換(3)作用:1、直觀的看出函數(shù)的性質(zhì);2、利用數(shù)形結(jié)合的方法分析解題的思路。提高解題的速度。發(fā)現(xiàn)解題中的錯(cuò)誤。4.快去了解區(qū)間的概念(1)區(qū)間的分類:開(kāi)區(qū)間、閉區(qū)間、半開(kāi)半閉區(qū)間;(2)無(wú)窮區(qū)間;(3)區(qū)間的數(shù)軸表示.5.什么叫做映射一般地,設(shè)A、B是兩個(gè)非空的*,如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于*A中的任意一個(gè)元素x,在*B中都有唯一確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:A B為從*A到*B的一個(gè)映射。記作“f:A B”給定一個(gè)*A到B的映射,如果a∈A,∈B.且元素a和元素對(duì)應(yīng),那么,我們把元素叫做元素a的象,元素a叫做元素的原象說(shuō)明:函數(shù)是一種特殊的映射,映射是一種特殊的對(duì)應(yīng),①*A、B及對(duì)應(yīng)法則f是確定的;②對(duì)應(yīng)法則有“方向性”,即強(qiáng)調(diào)從*A到*B的對(duì)應(yīng),它與從B到A的對(duì)應(yīng)關(guān)系一般是不同的;③對(duì)于映射f:A→B來(lái)說(shuō),則應(yīng)滿足:(Ⅰ)*A中的每一個(gè)元素,在*B中都有象,并且象是唯一的;(Ⅱ)*A中不同的元素,在*B中對(duì)應(yīng)的象可以是同一個(gè);(Ⅲ)不要求*B中的每一個(gè)元素在*A中都有原象。常用的函數(shù)表示法及各自的優(yōu)點(diǎn):1 函數(shù)圖象既可以是連續(xù)的曲線,也可以是直線、折線、離散的點(diǎn)等等,注意判斷一個(gè)圖形是否是函數(shù)圖象的依據(jù);2 解析法:必須注明函數(shù)的定義域;3 圖象法:描點(diǎn)法作圖要注意:確定函數(shù)的定義域;化簡(jiǎn)函數(shù)的解析式;觀察函數(shù)的特征;4 列表法:選取的自變量要有代表性,應(yīng)能反映定義域的特征.注意?。航馕龇ǎ罕阌谒愠龊瘮?shù)值。列表法:便于查出函數(shù)值。圖象法:便于量出函數(shù)值補(bǔ)充一:分段函數(shù) (參見(jiàn)課本P24-25)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。在不同的范圍里求函數(shù)值時(shí)必須把自變量代入相應(yīng)的表達(dá)式。分段函數(shù)的解析式不能寫(xiě)成幾個(gè)不同的方程,而就寫(xiě)函數(shù)值幾種不同的表達(dá)式并用一個(gè)左大括號(hào)括起來(lái),并分別注明各部分的自變量的取值情況.(1)分段函數(shù)是一個(gè)函數(shù),不要把它誤認(rèn)為是幾個(gè)函數(shù);(2)分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集.補(bǔ)充二:復(fù)合函數(shù)如果y=f(u),(u∈M),u=g(x),(x∈A),則 y=f[g(x)]=F(x),(x∈A) 稱為f、g的復(fù)合函數(shù)。例如: y=2sinX y=2cos(X2+1)7.函數(shù)單調(diào)性(1).增函數(shù)設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果對(duì)于定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)的任意兩個(gè)自變量xx當(dāng)x1
*,不等式
看課本吧
*函數(shù)數(shù)列三角函數(shù)平面向量不等式
以上就是好上學(xué)整理的人教版高中數(shù)學(xué)必修1至4公式及知識(shí)點(diǎn)總結(jié)相關(guān)內(nèi)容,想要了解更多信息,敬請(qǐng)查閱好上學(xué)。