好上學(xué),職校招生與學(xué)歷提升信息網(wǎng)。

分站導(dǎo)航

熱點(diǎn)關(guān)注

好上學(xué)在線報名

在線咨詢

8:00-22:00

當(dāng)前位置:

好上學(xué)

>

職校資訊

>

招生要求

院校排名函數(shù)的概念總結(jié) 高中函數(shù)知識點(diǎn)總結(jié)

來源:好上學(xué) ??時間:2024-10-27

今天,好上學(xué)小編為大家?guī)砹嗽盒E琶瘮?shù)的概念總結(jié) 高中函數(shù)知識點(diǎn)總結(jié),希望能幫助到廣大考生和家長,一起來看看吧!
院校排名函數(shù)的概念總結(jié) 高中函數(shù)知識點(diǎn)總結(jié)

函數(shù)概念總結(jié)為6個字?

奇變偶不變,符號看象限。
其中“奇變偶不變”指的是參數(shù)k如果是奇數(shù),則正弦變余弦,余弦變正弦;如果k是偶數(shù),則保持與原式子相同的正余弦性?!胺柨聪笙蕖钡囊馑际牵杭僭O(shè)x為銳角,如果原式為負(fù),則最后轉(zhuǎn)換的式子的前面要加負(fù)號;如果為正,則最后轉(zhuǎn)化的式子的前面無須加符號。
而正余切的轉(zhuǎn)化同樣遵循“奇變偶不變,符號看象限”的原則。

常見函數(shù)定義域,值域的求法總結(jié)


院校排名函數(shù)的概念總結(jié) 高中函數(shù)知識點(diǎn)總結(jié) 值域求法:
(1)直接法
(2)圖象法(數(shù)形結(jié)合)
(3)函數(shù)單調(diào)性法
(4)配方法
(5)換元法?(包括三角換元)
(6)反函數(shù)法(逆求法)
(7)分離常數(shù)法
(8)判別式法
(9)復(fù)合函數(shù)法
(10)不等式法
(11)平方法
等等

高中數(shù)學(xué)知識點(diǎn)總結(jié)——函數(shù)


院校排名函數(shù)的概念總結(jié) 高中函數(shù)知識點(diǎn)總結(jié)

一、函數(shù)的定義域的常用求法:

1、分式的分母不等于零;

2、偶次方根的被開方數(shù)大于等于零;

3、對數(shù)的真數(shù)大于零;

4、指數(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)大于零且不等于1;

5、三角函數(shù)正切函數(shù)y=tanx中x≠kπ+π/2;

6、如果函數(shù)是由實(shí)際意義確定的解析式,應(yīng)依據(jù)自變量的實(shí)際意義確定其取值范圍。

二、函數(shù)的解析式的常用求法:

1、定義法;2、換元法;3、待定系數(shù)法;4、函數(shù)方程法;5、參數(shù)法;6、配方法

三、函數(shù)的值域的常用求法:

1、換元法;2、配方法;3、判別式法;4、幾何法;5、不等式法;6、單調(diào)性法;7、直接法

四、函數(shù)的最值的常用求法:

1、配方法;2、換元法;3、不等式法;4、幾何法;5、單調(diào)性法

五、函數(shù)單調(diào)性的常用結(jié)論:

1、若f(x),g(x)均為某區(qū)間上的增(減)函數(shù),則f(x)+g(x)在這個區(qū)間上也為增(減)函數(shù)

2、若f(x)為增(減)函數(shù),則-f(x)為減(增)函數(shù)

3、若f(x)與g(x)的單調(diào)性相同,則f[g(x)]是增函數(shù);若f(x)與g(x)的單調(diào)性不同,則f[g(x)]是減函數(shù)。

4、奇函數(shù)在對稱區(qū)間上的單調(diào)性相同,偶函數(shù)在對稱區(qū)間上的單調(diào)性相反。

5、常用函數(shù)的單調(diào)性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數(shù)圖象。

六、函數(shù)奇偶性的常用結(jié)論:

1、如果一個奇函數(shù)在x=0處有定義,則f(0)=0,如果一個函數(shù)y=f(x)既是奇函數(shù)又是偶函數(shù),則f(x)=0(反之不成立)

2、兩個奇(偶)函數(shù)之和(差)為奇(偶)函數(shù);之積(商)為偶函數(shù)。

3、一個奇函數(shù)與一個偶函數(shù)的積(商)為奇函數(shù)。

4、兩個函數(shù)y=f(u)和u=g(x)復(fù)合而成的函數(shù),只要其中有一個是偶函數(shù),那么該復(fù)合函數(shù)就是偶函數(shù);當(dāng)兩個函數(shù)都是奇函數(shù)時,該復(fù)合函數(shù)是奇函數(shù)。

5、若函數(shù)f(x)的定義域關(guān)于原點(diǎn)對稱,則f(x)可以表示為f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],該式的特點(diǎn)是:右端為一個奇函數(shù)和一個偶函數(shù)的和。

高中函數(shù)知識點(diǎn)總結(jié)


院校排名函數(shù)的概念總結(jié) 高中函數(shù)知識點(diǎn)總結(jié)

高中函數(shù)知識點(diǎn)總結(jié),參考以下內(nèi)容。

一、函數(shù)的定義域的常用求法:

1、分式的分母不等于零;

2、偶次方根的被開方數(shù)大于等于零;

3、對數(shù)的真數(shù)大于零;

4、指數(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)大于零且不等于1;

5、三角函數(shù)正切函數(shù)y=tanx中xfkIT+TT/2;

6、如果函數(shù)是由實(shí)際意義確定的解析式,應(yīng)依據(jù)自變量的實(shí)際意義確定其取值范圍。

二、函數(shù)的解析式的常用求法:

1、定義法;

2、換元法;

3、待定系數(shù)法;

4、函數(shù)方程法;

5、參數(shù)法;

6、配方法。

三、函數(shù)的值域的常用求法:

1、換元法;

2、配方法;

3、判別式法;

4、幾何法;

5、不等式法;

6、單調(diào)性法;

7、直接法。

四、函數(shù)的最值的常用求法:

1、配方法;

2、換元法;

3、不等式法;

4、幾何法;

5、單調(diào)性法。

五、函數(shù)單調(diào)性的常用結(jié)論:

1、若(x),g(x)均為某區(qū)間上的增(減)函數(shù),則f(x)+g(x)在這個區(qū)間上也為增(減)函數(shù)。

2、若(x)為增(減)函數(shù),則-f(x)為減(增)函數(shù)。

3、若f(x)與g(x)的單調(diào)性相同,則f[g(x)]是增函數(shù);若f(x)與g(x)的單調(diào)性不同,則f[g(x]是減函數(shù)。

4、奇函數(shù)在對稱區(qū)間上的單調(diào)性相同,偶函數(shù)在對稱區(qū)間上的單調(diào)性相反。

5、常用函數(shù)的單調(diào)性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數(shù)圖象。

六、函數(shù)奇偶性的常用結(jié)論:

1、如果一個奇函數(shù)在x=0處有定義,則f(0)=0,如果一個函數(shù)y=f(x)既是奇函數(shù)又是偶函數(shù),則f(x)=0(反之不成立)。

2、兩個奇(偶)函數(shù)之和(差)為奇(偶)函數(shù);之積(商)為偶函數(shù)。

3、一個奇函數(shù)與一個偶函數(shù)的積(商)為奇函數(shù)。

4、兩個函數(shù)y=f(u)和u=g(x)復(fù)合而成的函數(shù),只要其中有一個是偶函數(shù),那么該復(fù)合函數(shù)就是偶函數(shù);當(dāng)兩個函數(shù)都是奇函數(shù)時,該復(fù)合函數(shù)是奇函數(shù)。

5、若函數(shù)f(x)的定義域關(guān)于原點(diǎn)對稱,則f(x)可以表示為f(x)=1/2[f(x)+f(-x)]+1/2f(x)+f(-x)],該式的特點(diǎn)是:右端為一個奇函數(shù)和一個偶函數(shù)的和。

學(xué)好高中數(shù)學(xué)函數(shù)的方法:

1、課前預(yù)習(xí)教材。高中生想要學(xué)好數(shù)學(xué),可以養(yǎng)成課前預(yù)習(xí)的好習(xí)慣。就是提前把老師第二天要講的內(nèi)容預(yù)習(xí)一下,看看自己哪里能看懂,哪里不懂。這樣才能在老師講課的時候,帶著問題有針對性地去聽。

2、上課專心聽講。很多高中生數(shù)學(xué)不好的原因,往往是因?yàn)闆]有認(rèn)真聽課。很多同學(xué)都認(rèn)為老師講的已經(jīng)懂了,就不認(rèn)真聽了,但是在自己做題的時候,卻往往做不對題。上課專心聽講往往是比課下自己學(xué)習(xí)要效果更好。

3、準(zhǔn)備筆記本。高中生要準(zhǔn)備一個筆記本,筆記本并不是讓你記公式和概念的,這些的東西書上都是有的,筆記本主要是要記老師給的例題。畢竟老師是很有經(jīng)驗(yàn)的,他們給的例題都是有一定的代表性的,把例題研究透對于數(shù)學(xué)成績的提高是有很大的助益的。

函數(shù)定義域總結(jié)是什么?

函數(shù)定義域總結(jié)是:

(1)自然定義域,若函數(shù)的對應(yīng)關(guān)系有解析表達(dá)式來表示,則使解析式有意義的自變量的取值范圍稱為自然定義域。

(2)函數(shù)有具體應(yīng)用的實(shí)際背景。

(3)人為定義的定義域。例如,在研究某個函數(shù)時,僅考察函數(shù)的自變量x在[0,10]范圍內(nèi)的一段函數(shù)關(guān)系,因此定義函數(shù)的定義域?yàn)閇0,10]。

其主要根據(jù):

①分式的分母不能為零。

②偶次方根的被開方數(shù)不小于零。

③對數(shù)函數(shù)的真數(shù)必須大于零。

④指數(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)必須大于零且不等于1。

以上就是好上學(xué)整理的院校排名函數(shù)的概念總結(jié) 高中函數(shù)知識點(diǎn)總結(jié)相關(guān)內(nèi)容,想要了解更多信息,敬請查閱好上學(xué)。

標(biāo)簽:????

分享:

qq好友分享 QQ空間分享 新浪微博分享 微信分享 更多分享方式
(c)2024 m.hslydf.cn All Rights Reserved SiteMap 聯(lián)系我們 | 浙ICP備2023018783號